
Gaining Control of Cellular Traffic Accounting by
Spurious TCP Retransmission

Younghwan Go
KAIST

yhwan@ndsl.kaist.edu

EunYoung Jeong
KAIST

notav@ndsl.kaist.edu

Jongil Won
KAIST

wji4@ndsl.kaist.edu

Yongdae Kim
KAIST

yongdaek@kaist.ac.kr

Denis Foo Kune
University of Michigan

foo@eecs.umich.edu

KyoungSoo Park
KAIST

kyoungsoo@ee.kaist.ac.kr

Abstract—Packet retransmission is a fundamental TCP mech-
anism that ensures reliable data transfer between two end nodes.
Interestingly, when it comes to cellular data accounting, TCP
retransmissions create an important policy issue giving rise
to a tension between ISPs accounting for network resource
consumption, and users only being aware of the application layer
data. Regardless of the policies, we find that TCP retransmissions
can be easily abused to manipulate the current practice of cellular
traffic accounting.

In this work, we investigate the TCP retransmission account-
ing policies of 12 cellular ISPs in 6 countries and report the
accounting vulnerabilities with TCP retransmission attacks. First,
we find that cellular data accounting policies vary between ISPs.
While the majority of cellular ISPs blindly account for every
IP packet, some ISPs intentionally remove the retransmission
packets from the user bill for fairness. Second, we show that
it is easy to launch the “usage-inflation” attack on the ISPs
that blindly account for every IP packet. In our experiments,
we could inflate the usage up to the monthly limit with an attack
invisible to the subscriber and lasting only 9 minutes. For those
ISPs that do not account for retransmission, we successfully
launch the “free-riding” attack by tunneling the payload over
fake TCP headers that look like retransmissions. To counter
the attacks, we implement and evaluate Abacus, a light-weight,
scalable accounting system that reliably detects “free-riding”
attacks even in the 10 Gbps links.

I. INTRODUCTION

The demand for cellular Internet access is rapidly increas-
ing, reaching over 2 billion mobile broadband subscribers
worldwide in 2013 [1], making accurate accounting of cellular
traffic all the more important. Most cellular Internet Service
Providers (ISPs) adopt byte-level accounting of consumed IP

packets that flow through their cellular networks 1. Typical
access plans limit the monthly usage to a few GBs, and the
subscribers pay high overage fees when their data consumption
exceeds the pre-negotiated monthly limit.

Byte-level usage accounting, however, presents an impor-
tant policy issue when it comes to TCP traffic. For reliable
data transfer, TCP automatically retransmits the packets when
a sender receives 3 duplicate ACKs [2], [3] or Retransmission
Timeout (RTO) triggers [4]. Cellular traffic accounting systems
must decide whether to account for those retransmitted TCP
packets. Given that over 95% of the cellular traffic is based on
TCP [5], [6], the accounting policy could affect the majority
of cellular traffic in practice.

One approach is to charge for every IP packet regardless of
TCP packet retransmissions. At a glance, this “blind account-
ing” looks to be a reasonable choice to cellular ISPs since
every IP packet consumes resources in their infrastructure.
It is not only simple to implement but overcharging due
to packet retransmission is expected to be small in normal
situations since typical packet retransmission rates are low
(0.4 to 1.7%) in well-provisioned cellular infrastructures. How-
ever, this policy exposes the cellular subscribers to a “usage-
inflation” where an adversary arbitrarily inflates the usage
by intentionally retransmitting packets from remote servers.
Unfortunately, it is non-trivial to reliably distinguish between
valid and fake retransmissions since our measurements indicate
that retransmission rates can go up to from 40% to 85% in
poorly-provisioned areas.

The alternative approach is to remove retransmitted packets
from the usage amount for billing. The rationale behind this
“selective accounting” is to hold the ISP responsible for any
retransmissions since the wireless cellular architecture is more
likely to drop packets, particularly in those poorly-provisioned
areas. This model also fits well with subscribers’ conceptual
view that they should be charged only for application data
without penalties from the underlying transport layer. While
this avoids the “usage-inflation” attack, it significantly in-
creases the implementation complexity by imposing the flow

1Flat-fee plans are available for 3G (or lower-speed) access in some ISPs
but unrestricted flat-fee plans are rare for 4G or LTE access.

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’14, 23-26 February 2014, San Diego, CA, USA
Copyright 2014 Internet Society, ISBN 1-891562-35-5
http://dx.doi.org/doi-info-to-be-provided-later

RAN

3G UMTS

4G LTE

CN

Internet

UE

NodeB

eNodeB

RNC

Target

Server

SGSN GGSN

GTP-U Tunnel

S-GW P-GW MME

Fig. 1. Overall architecture of UMTS/LTE cellular network

management burden on the accounting system. In addition,
improper implementation could be vulnerable to “free-riding”
attacks if attackers tunnel the actual content over fake TCP
headers masquerading as TCP retransmission packets.

In this paper, we explore possible attacks on cellular
accounting systems with TCP retransmissions. We first inves-
tigate the accounting policies of 12 cellular ISPs around the
world. We find that 9 cellular ISPs blindly account for every IP
packet, but none of them defend against the “usage-inflation”
attack with malicious TCP retransmission nor have informed us
of the attack existence. Our experiments show that an attacker
can increase the usage of an arbitrary subscriber to their
monthly limit (in our case, 1GB) with an attack lasting only
a few minutes. We also find that some ISPs leave connections
open indefinitely making those vulnerable to usage-inflation
attacks despite repeated client-side closures. The remaining 3
ISPs carefully take out the retransmission packets from the bill,
but we observe that their current implementation is vulnerable
to the “free-riding” attack. We have implemented tunneling
proxies and protocols for the attack, and show that one can
use the cellular data service for free at the speed of 15.6 to
22.1 Mbps with the ISPs 2.

There have been some reports of cellular accounting vul-
nerabilities due to simple policy loopholes [7], [8] or packet
drops from service roaming [9]. In contrast, detecting or
preventing the attacks that exploit TCP retransmission bears
the fundamental difficulty tied to the reliability mechanism of
the TCP protocol itself. The core problem lies in that TCP is
operated on end nodes while the accounting middleboxes deal
with the IP layer in the middle of the network. Specifically,
middleboxes do not know the state of each TCP context and
cannot reliably infer whether a packet is retransmitted out of
necessity or out of malicious will. The problem is similar
to detecting aggressive TCP senders that ignore congestion
control in the routers, which is known to be difficult [10]–
[12].

To work around these attacks, we propose that the cellular
ISPs should remove TCP retransmission packets from the user
bill, but they should develop a robust accounting system that
detects the “free-riding” attacks by flow-level Deep Packet
Inspection (DPI). To hint that such a system is possible,
we show the design and implementation of Abacus, a light-
weight byte-level accounting system that manages hundreds of
thousands of concurrent connections and runs probabilistic DPI
on the payload that reliably catches the “free-riding” attack on
a commodity machine.

The rest of the paper is organized as follows. In Section
II, we explain the overall architecture and the accounting

2We have reported the vulnerability and our experiments to all three ISPs.
At the time of writing, the fixes had not yet been deployed.

GTP-U Header
IP

Header

TCP

Header
Data Payload

T-PDU

GTP-U

Fig. 2. GPRS packet format between the GSNs

process of cellular data traffic, and discuss the causes for TCP
retransmission in the cellular infrastructure. We investigate the
accounting policies of various ISPs, and compare the packet
retransmission rates in cellular TCP traffic in Section III. In
Section IV, we implement the “usage-inflation” and “free-
riding” attacks and check how current ISPs behave against
them. We propose an accurate accounting system that detects
the “free-riding” attacks in Section V and evaluate the system
in Section VI. Finally, we look at previous works in cellu-
lar traffic characteristics and accounting in Section VII, and
conclude in Section VIII.

II. BACKGROUND

In this section, we describe the architecture of the cellular
network and the accounting process of cellular data traffic.
We mainly focus on the Universal Mobile Telecommunica-
tions System (UMTS) [13] for 3G and Long Term Evolution
(LTE) [14] for 4G. The architecture is based on a Packet-
Switched (PS) domain, in which the data is transferred in
packets [15]–[18]. We then look at the possible causes of TCP
packet retransmission in cellular networks.

A. Cellular Network Architecture

The overall cellular network architecture is divided into two
parts: (1) the wireless links between the client and the cellular
ISP, and (2) the wired links between the cellular ISP and the
target server (Figure 1). When a user initiates a connection to
the cellular network (e.g., turning on the cellular interface of
a device), their User Equipment (UE) first creates a channel
between a base station (NodeB for 3G, eNodeB for LTE)
located in the Radio Access Network (RAN). In the case of
3G networks, the NodeB is connected to a Radio Network
Controller (RNC), which controls the NodeB operations such
as handling the message encryption and allocating the radio
resources. It is also responsible for managing the UE’s mobility
such as handling soft handovers between two RANs, enabling
the UE to connect to another NodeB at different RAN to
provide a seamless communication. For LTE, the eNodeB
incorporates the RNC functions.

Once the UE’s packets arrive at the RAN, they are trans-
ferred via a wired network. The cellular ISP’s Core Network
(CN) receives the packets and processes them via the General
Packet Radio Service (GPRS). The packet processing is done
as follows. (1) All packets transmitted from the RAN are
received and logged for billing purposes by the Serving GPRS
Support Node (SGSN) or Serving Gateway (S-GW). In the
case of LTE, the Mobility Management Entity (MME) is
responsible for tracking the UE and choosing the appropriate
S-GW to serve the UE. It is also responsible for mobility
between 3G and LTE. At this point, all packets are carried
around the CN in the form of GPRS Tunneling Protocol (GTP-
U [19]) packets as illustrated in Figure 2. The GTP-U contains

2

Offline Charging

Core Network

Billing Domain

Billing System

CN

Domain

Service

Element

Sub-

system

Charging Triggering Function

Charging Data Function

Charging Gateway Function

Online Charging

CN

Domain

Service

Element

Sub-

system

Charging Triggering Function

Online Charging Function

OCS

Fig. 3. Architecture of offline/online charging

the original IP packet, which makes IP packets the accounting
units. (2) The GTP-U packet is transferred to the Gateway
GPRS Support Node (GGSN) or Packet data network Gateway
(P-GW), where it is converted back to the original Packet Data
Protocol (PDP) format, in this case IP. (3) The GGSN records
the packet received event for future billing and forwards the
packet to the external data network where the target server is
located. This process is done in reverse for the downlink case.

B. Cellular Data Accounting Process

Data accounting in cellular networks is done by the ISP by
using Charging Data Record (CDR). The CDR is a formatted
collection of information necessary for billing such as the user
identity, the session, the network elements, and services used to
support a subscriber session. Before the CDR creation, the user
first sends an Activate PDP Context Request message to the
SGSN/S-GW to initiate the PDP context setup process [20].
The PDP context activation then triggers the serving nodes
(SGSN, GGSN, S-GW, P-GW) to create their own CDRs
(S-CDR, G-CDR, SGW-CDR, PGW-CDR) with the UE’s
unique Charging ID (C-ID), and begins collecting the charging
information. The SGSN/S-GW collects information related
to the radio network usage while the GGSN/P-GW collects
information on the external data network usage. The standard
charging information collected by the serving nodes are the
radio interface, usage duration, usage of the general packet-
switched domain resources, source/destination IP addresses,
usage of the external data networks, and the location of the
UE.

Figure 3 shows the architecture of the offline and online
cellular data charging mechanisms in the PS domain [21].
In the case of offline charging, the charging information for
network resource usage is collected concurrently with the re-
source itself. During the charging process, a Charging Trigger
Function (CTF) first generates a charging event, an activity
utilizing network resources, and forwards it to a Charging Data
Function (CDF). The CDF then constructs a CDR and transfers
it to the Charging Gateway Function (CGF), which acts as a
gateway between the CN and Billing Domain (BD) outside
the CN. Finally, the CGF creates a CDR file and forwards
it to a Billing System (BS) inside the BD where the billing
actually takes place. Online charging is executed the same
way except that the authorization for the network resource
usage must be obtained by the Online Charging System (OCS)

beforehand. The resource usage authorization may be limited
by credits (i.e., duration or the data volume), resulting in
different charging information compared to offline charging.
During online charging, a CTF generates a charging event and
forwards it to a OCS’s Online Charging Function (OCF) in
order to obtain authorization for the resources. The serving
nodes deduct the resource usage until the available credit
becomes zero. For byte-level accounting per user, most cellular
ISPs account for entire IP packet sizes while their policies
differ as to whether they include retransmitted TCP packets or
not.

C. Possible Causes of TCP Retransmission

TCP guarantees reliable data transfer by retransmitting a
packet when it suspects a packet loss [2], [4]. We analyze two
major reasons for TCP retransmission in cellular networks: (1)
packet losses in the path, and (2) bufferbloating at the base
stations resulting in a large packet loss during a handoff.

1) Packet Drop Causes Retransmission: A packet drop may
occur at three locations for cellular networks: (1) at a wired
link between the server and ISP, (2) at a wired link between
the GSNs/GWs within the ISP, and (3) at a wireless link
between the client and RAN. Like the wired Internet, a packet
drop for the first two cases is detected by the transport layer
and is retransmitted after a node receives 3 duplicate ACKs
or experiences an RTO. However, when a packet is dropped
between a client and a base station in RAN, the link layer
is responsible for retransmitting the packet until the receiving
host acknowledges the packet [22], [23]. In other words, if a
packet is dropped a number of times at the link layer but is
eventually sent, TCP would not detect any packet losses but
simply experience an increased Round-Trip Time (RTT). Only
when a TCP timeout occurs does the TCP layer retransmit a
packet to the receiving host.

2) Bufferbloating Causes Packet Loss at Handoff: A base
station in a RAN typically has a large buffer in order to smooth
out bursty data traffic for time-varying channels [24], [25]. A
large buffer allows a base station to deal with incoming wired
traffic rates above the wireless link capacity, but resulting in
long latencies due to overbuffering as the base station tries to
recover from packet drops. With an oversized buffer, a large
chunk of packets may be lost when a inter-system handoff
occurs such as between 3G and 2G, 3G and 4G systems [9].
This problem stems from the lack of support for packet
handover between the RANs of different cellular networks.
As a result, the original sender is required to retransmit every
packet that is lost. If the base station maintains a large buffer,
the packet loss rate would further increase, resulting in a large
number of retransmissions.

III. TCP RETRANSMISSION ACCOUNTING POLICY

To better understand the commonly used accounting poli-
cies for TCP retransmissions, we measured selected cellular
providers in countries with varied cellular infrastructures. We
used a retransmission rate metric defined as (Retransmitted
Bytes / Total Bytes in a Flow).

3

TABLE I. Accounting policies for TCP retransmission of 12
cellular ISPs in 6 countries

ISPs (Country) Policy
AT&T, Verizon, T-Mobile, Sprint (U.S.) blind
Telefonica (Spain) blind
O2 (Germany) blind
T-Mobile (England) blind
China Unicom, CMCC (China) blind
SKT, KT, LGU+ (South Korea) selective

A. Accounting Policy for TCP Retransmission

We selected 12 ISPs in 6 countries (see Table I) over
which we intentionally forced TCP retransmission packets and
compared the transmitted volume with the accounted volume.
Our test setup includes a test server on Amazon EC2 [26] and
the following mobile clients depending on the availability for
each ISP: Samsung Galaxy S3 (Android 4.1.2), LG Optimus
Elite (Android 2.3.7), Samsung Illusion (Android 2.3.6), Apple
iPhone 4 (iOS 5.1.1 - 9B206) and Apple iPad 2 (iOS 5.1.1 -
9B206).

1) Policy Measurement: We built a customized HTTP
server sitting on top of a modified TCP layer that intentionally
retransmits TCP packets without waiting for timeouts and
ignoring ACKs. The server opens a standard TCP listening
socket and a raw socket, and binds both sockets on the server
IP and the listening port. It accepts the client connection via
a listening socket and receives the HTTP request using the
accept socket. It then uses a raw socket to inject apparent
retransmitted packets (which may contain different payloads)
in the on-going TCP session. On the client side, we used
wget [27] to fetch a file from our server, and tcpdump [28]
or pirni [29] to capture all packets in the connection. We then
compared the captured packet volume with the accounted value
by the ISP.

We investigate the retransmission accounting policy using
the following two experiments. We first retransmit the same
packet verbatim n times and measure the ISP accounted vol-
ume. We then run the same experiment, but we substitute the
payload of the retransmission packets and again measure the
ISP accounted volume. We ensure that the sequence number
of the retransmission packets are within the last received ACK
to prevent any middlebox from dropping the packets in transit.

2) Results: Table I shows the results of our experiments.
Cellular ISPs in the U.S., China, and three European countries
(i.e., all countries we investigated except South Korea) adopt
a “blind” accounting policy that accounts for every IP packet
regardless of TCP retransmission. In contrast, all three ISPs in
South Korea enforce a “selective” accounting policy that does
not charge for retransmission packets. Interestingly, we find
that all of these ISPs are vulnerable to either “usage-inflation”
or “free-riding” attacks, which we will explore further in
Section IV.

The “Blind” accounting policy is understandable from an
ISP’s point of view as it is simple to implement and every
packet consumes resources on the wireless cellular network.
The rationale behind this policy is that the network should
be responsible only for the IP layer functionalities while

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Normal High Mobility Weak Signal

R
et

ra
n
sm

is
si

o
n

 R
at

io
 (

%
)

Retransmitted Data Packet Duplicate ACK

Fig. 4. Average retransmission rates in various environments

retransmission in the transport layer is regarded as an end-
node issue. However, from a client’s perspective, this could
be unfair as the user might have to pay for packets that were
discarded before reaching the application layer. That is, the
subscribers have to pay for any packet that passes through the
billing system regardless of whether it reaches the application
on the client device or whether the same payload has been
delivered multiple times and discarded by a lower layer in the
device’s communication stack.

The “Selective” accounting policy attempts to be more
fair to the subscribers. The underlying rationale is to hold
the cellular ISPs responsible for packet retransmission since
packet loss or delay is often caused by a lack of provisioning
or operational errors. However, the implementation of selective
accounting policy is complex, requiring flow state monitoring
of about 105 to 106 concurrent connections in real networks.
We find that one Korean ISP was actually identifying retrans-
mission based on the sequence number (e.g., if a packet with
smaller sequence number arrives out-of-order after supposedly
the next packet, it is not accounted regardless of whether it is
a retransmission or not).

B. Retransmission Rate Measurement

Given the accounting policies for TCP retransmission, we
investigate the typical fraction of cellular traffic that can be
attributed to retransmissions. To this end, we measure the TCP
retransmission rates in devices carried by 11 volunteers, all
graduate students at KAIST. The measurement period was 38
days (March 22nd - April 29th, 2013). During this period,
we gathered 151,469 flows amounting to 3.62 GB of data
in volume. All three ISPs in South Korea were used for the
measurements. Although the sample is small and may not be
representative of the cellular users population, we believe that
the results give a first approximation on retransmission rates
in the real world.

1) Retransmission Analysis: We implemented a simple
packet analyzer that processes captured TCP packets in com-
plete flows (i.e., 3-way handshake and teardown must be
visible). The analyzer produces per-flow logs such as the total
number of transferred packets and bytes, the retransmission
rates of data packets and duplicate ACKs. We divide the flows
by the application-level service to see if there is any difference
in retransmission rates.

Average users do not experience retransmissions: Over-
all, the average retransmission rates are reasonable (0.4-1.7%)

4

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

C
D

F

Retransmission Ratio

(a) Daejeon in South Korea

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Retransmission Ratio

(b) Princeton, NJ in the U.S.

Fig. 5. Cumulative distribution of the retransmission rates of the flows that experience any packet retransmission in South
Korea and in the U.S. (The fraction of the flows with non-zero retransmissions is 10.7% in South Korea and 45.3% in the U.S.)

0

0.5

1

1.5

2

2.5

3

Messenger Google Mail Facebook YouTube

R
et

ra
n

sm
is

si
o

n
 R

at
io

 (
%

)

Retransmitted Data Packet Duplicate ACK

Fig. 6. Average retransmission rates per service. Messenger:
KakaoTalk messenger [30], Google: Google Web search, Mail:
KAIST main mail server, Facebook: Facebook mobile app,
YouTube: video streaming

as is shown in Figure 4. We first confirm that all retransmission
packets are legitimate, having the identical payload as the
original packets. Then, we divide the measurement environ-
ment into three groups based on factors that can affect packet
drops and retransmission rates. For stationary users, we tag the
flows as “normal” if the signal strength is strong (4-5 signal
bars) or “weak signal” otherwise. For moving users (e.g., in
a travelling car or in a high-speed train), we tag the flows as
“high mobility”.

In our sample, the average retransmission rates for the
“high mobility” group are similar to those in the “normal”
group, both for retransmitted data and duplicate ACK pack-
ets (0.5%, 0.12% vs. 0.44%, 0.16%). This implies that the
handovers work well without a high packet loss rate. For the
“weak signal” group, the retransmission rates were slightly
higher (1.7%, 0.29%). We suspect that links with weak signals
incur more packet drops due to timeouts or increased errors in
the wireless environments.

When the data collected was organized by application layer
services, the retransmission rates appeared roughly similar.
Figure 6 shows the comparison of five of the most popular
services in our volunteer sample. The notable exception was
YouTube showing slightly higher retransmission rates than
others. This is likely due to the application flow control
techniques used by YouTube [31]. We also suspect that larger
contents often cause short-term congestion, and increase the
retransmission rates. Additionally, many YouTube videos may
be cached at CDN outside South Korea, increasing the likeli-

hood of out-of-order delivery which in turn would trigger the
TCP fast retransmit mechanism.

Some flows experience high retransmission rates: While
the majority of flows have low retransmission rates, our data
shows that some flows experience high retransmission rates.
Figure 5(a) shows the cumulative distribution of retransmission
rates for any flows that had at least one retransmitted packet.
Over half of them show more than 10% retransmission rates,
and the worst 10% has retransmission rates between 40 to
85%. Those measurements are in line with our previous
measurements in the 3G cellular backhaul link in which we
find some flows have as large as 93% retransmission rates [32].

To see if a similar situation is observed in other countries,
we measure the retransmission rates with one of the major
ISPs in Princeton, NJ. The overall retransmission rates are
slightly higher than in South Korea but are reasonable, ranging
from 2.2 to 3.2% on average, although some flows exhibit
high retransmission rates. Figure 5(b) shows that over half of
the flows show more than 35%, and the worst 10% shows
over 49% and up to 80% retransmission rates. Given that
we captured the packets on the end client device, the actual
retransmission rates could be higher if some of retransmitted
packet were dropped in transit.

IV. TCP RETRANSMISSION ATTACKS

We implement the “usage-inflation” and “free-riding” at-
tacks and demonstrate that one can easily abuse the cellular
accounting systems of current ISPs with malicious TCP re-
transmissions. We ran the “usage-inflation” attack on four ISPs
in the U.S. (AT&T, Verizon, Sprint, and T-Mobile) that blindly
account for retransmission packets. We ran the “free-riding”
attack on three ISPs in South Korea (SKT, KT, LGU+) that do
not account for TCP packet retransmission. In our experiments,
the “usage-inflation” attack was attempted only on our mobile
clients and we paid for the resulting inflated amounts. We have
also informed the South Korean ISPs of the “free-riding” attack
prior to our experiments. The experiments are carried out in
Princeton, NJ in the U.S., and in Daejeon in South Korea.

A. Usage-Inflation Attack

The “usage-inflation” attack arbitrarily inflates the cellular
data usage of a target subscriber by intentionally retransmitting
packets in the flow even without actual packet losses. Figure 7
shows one attack scenario. The attacker first sends a phishing

5

User clicks

on the URL

User does

not notice

an attack!

8888 http://funnyvideo.c

Fig. 7. “Usage-inflation” attack. A phishing SMS message is
sent to a target client. When the user clicks on the link, she is
redirected to an innocent-looking webpage while the attack is
launched in the background.

UE
Malicious

Server

Cellular Network Wired Internet

Billing

System

Pkt kPkt k

ACK for k ACK for k

Pkt x1 Pkt xn $$

$

$

FIN FIN$

Pkt yiPkt yi

RST RST

$

$

$$

(xi: seq # in last window)

(2)

(1)

Pkt x1 Pkt xn

Pkt y1 Pkt yn Pkt y1 Pkt yn

(yi : seq # in last window)

Accept

Drop

Drop

Drop

Ignore

Attack

Attack

Attack

Fig. 8. “Usage-inflation” attack process. 1) Retransmission
attack after the client-side connection closure. 2) Retransmis-
sion attack along with normal data transfers.

SMS message to a target client with the URL that leads to a
malicious site. When a user clicks on the link, the browser is
redirected to that malicious Web server that inflates the usage
by spurious packet retransmission. At the application layer,
the server transfers the requested content to the client in a
normal TCP connection, so the subscriber does not suspect
any sign of attack. However, the underlying modified TCP
layer on the server behaves as if it did not receive any ACKs
from the client or as if its RTO fired prematurely and injects
retransmitted packets in the background. This attack does not
require compromising the client or any intermediate hops.
As long as the user is redirected to a malicious server (via
3rd party advertisements, phishing emails or SMS messages),
the attacker can inject any number of retransmission packets,
which does not violate the TCP semantics.

Figure 8 shows two ways to implement this attack. First,
the attacker can retransmit the packets after the client finishes
downloading the content. That is, the server pretends it did not
receive the client-side FIN/RST as well as the ACKs for the
last batch of packets and retransmits the packets that belong
to the last send window. This approach allows an attacker to
greatly overcharge the usage in a short time by utilizing the
full bandwidth between the server and the client. However, a
smart accounting system may prevent the attack if it detects a
high retransmission rate after a FIN/RST. A more sophisticated
attack is to embed the retransmission packets in the stream
of normal packets. Instead of blindly retransmitting the same
packet multiple times, the attacker can carefully pick a random
packet in its send window. To prevent a noticeable slowdown
in the download rate, the attacker can control the goodput

0

1

2

3

4

5

6

ISP Accounting Measured Volume

V
o

lu
m

e
(M

B
)

0

1

2

3

4

5

6

ISP Accounting Measured Volume

V
o

lu
m

e
(M

B
)

ISP Accounting Normal Data + ACK

Retransmitted Data + Duplicate ACK

Fig. 9. Accounted volume vs. measured volume for “usage-
inflation” after FIN for all U.S. cellular ISPs

of interactive contents (e.g., audio stream typically requires
500 Kbps while video streaming requires 2 Mbps [33]) while
injecting the retransmission packets in the background. As long
as the streaming content does not stop in the middle, the user
may not notice an ongoing attack.

Retransmit after FIN: We instantiate this attack by down-
loading a 1 MB file via wget from a server that we control.
Our server retransmits four copies of each packet after the FIN
(a usage blowup factor of four). We conduct the experiments
with all four U.S. ISPs, and compare the captured volume on
our mobile device with the accounted value by the cellular
ISPs. We find that the attack is successful with all four ISPs,
and we show the result of one of the attacks in Figure 9.

To determine the limits of usage inflation after a client-
side FIN, we continue to send retransmission traffic from the
server and note the client side behavior. Once the client closes
the connection by sending a FIN, it continues to reply to all
incoming retransmission packets with ACKs for 2-3 minutes.
After that period, it switches to sending RST packets in an
attempt to get the remote server to stop the flow of TCP
packets for this connection. We find that some ISPs drop all
retransmission packets after the RST while others deliver the
packets to the client for as far as we could observe. In fact,
we find that one ISP allows retransmitted packet transfers up
to 4 hours after we stopped the experiment following the FIN
packet from the client. We also find that all US ISPs do not
limit the data transfer speed after the FIN, allowing us to inflate
the usage to 1.14 GB in just 9 minutes with one ISP. Table II
shows the packet drop policy after a RST with 7 ISPs in the
U.S. and in South Korea. The ISPs noted on the table are
anonymized and in a random order.

Retransmit during Normal Transfer: Large client down-
loads that lasts for long time periods are vulnerable to mali-
cious packet retransmission during normal data transfer. For
example, if a user watches a streaming video that spans tens
of minutes, the attacker can inflate the usage in the background
while still meeting the bandwidth requirement for the content.
Compared with the retransmit-after-FIN attack, this attack is
harder to defend since the previous attack could be mitigated
at the ISP by blocking any incoming packets after a client-side
RST.

6

0.437

0.233

0.129

0.076
0.038 0.02 0.009 0.004

0

0.1

0.2

0.3

0.4

0.5

0 1 2 5 10 20 50 100

B
an

d
w

id
th

 (
M

b
p
s)

Number of retransmissions per packet

Normal Packet Bandwidth Retransmitted Packet Bandwidth

(a) Results for one ISP in U.S.

17.21

8.61

5.72

2.86
1.56 0.82 0.33 0.18

0

2

4

6

8

10

12

14

16

18

0 1 2 5 10 20 50 100

B
an

d
w

id
th

 (
M

b
p

s)

Number of retransmissions per packet

Retransmitted Packet BandwidthNormal Packet Bandwidth

(b) Results for one ISP in South Korea

Fig. 10. Effective bandwidths over various usage blowup factors with an ISP in the U.S. and in South Korea

Send ‘N’ packets

with incorrect

TCP checksum or

invalid TCP options

Drop

Drop

Accept

Accept: retransmissions look valid

Fig. 11. “Usage-inflation” attack with incorrect TCP check-
sums or invalid fields in TCP headers/options

We simulated the retransmit-during-normal-transfer attack
by having the client download a 10 MB file and saturate the
available bandwidth with various usage blowup factors, n (e.g.,
n = 1, 2, 5, 10, 20, 50, 100). We confirmed that all ISPs
show a usage inflation as expected, shown in Figure 9. Our
attack didn’t require much sophistication (such as avoiding
too many retransmissions of the same packet) on current ISPs
since they blindly accounted for all retransmission packets into
the customer bill.

Next, we measure the available bandwidth under various
usage blowup factors. The measurement is important to keep
the goodput above the minimum bandwidth requirement of
the client-side application during our retransmission packet
injection attack happening in the background. Figure 10(a)
shows the goodput over various usage blowup factors with
one ISP in the U.S. As expected, the goodput degradation is
inversely proportional to the usage blowup factor. While the
maximum available bandwidth is not large in the area, we
believe that the attacker can squeeze in more spurious packets
as the wireless bandwidth in the region improves. Figure 10(b)
shows the available bandwidth for the same experiment with
one ISP in South Korea.

Figure 11 shows a more sophisticated attack scenario.
To make the retransmission look legitimate, the attacker ma-
nipulates the TCP packets such that the server sends the
packets with incorrect TCP checksums or invalid values in
TCP headers or options (e.g., an invalid URP pointer or invalid
Maximum Segment Size (MSS) option [4]). Then, the client

TABLE II. Packet handling policies in U.S. (1-4) and South
Korean ISPs (5-7)

ISP Pkts Pkts with Pkts with
after RST incorrect checksums invalid options

1 block block block
2 block block block
3 forward block block
4 forward block block
5 forward block block
6 block forward forward
7 forward forward forward

would silently drop the received packets without responding
with ACKs. Subsequent retransmission packets from the server
would look legitimate to the accounting system since it has
not seen the ACKs. We have tested these scenarios with all
7 cellular ISPs in the U.S. and South Korea and find that all
U.S. ISPs drop the TCP packets with wrong values while some
ISPs in South Korea forward them to the client. Interestingly,
this implies that some ISPs verify the TCP header/option
fields in the accounting middlebox. Especially, TCP checksum
verification would require scanning the payload of the packet,
so DPI on every TCP packet is already in place with some
ISPs 3. However, we also note that if an attacker decides to
bloat the TCP headers with valid options and checksums (e.g.,
fill up TCP option with NOOP), DPI would still not detect the
inflation. Table II summarizes the packet handling policies of
the 7 ISPs anonymized and in a random order.

Difficulty of Detecting “Usage-Inflation” Attacks: It
may appear that the cellular accounting system can detect the
“usage-inflation” attack by catching the anomalous flows with
abnormally high retransmission rates. However, detecting the
attack by a static retransmission rate threshold could lead to
false positives since those exist in legitimate flows as we have
previously observed in Section III. If a smart attacker controls
the level of usage inflation such that the retransmission rates
look similar to those of poorly-provisioned regions, detecting
the attack could be challenging.

For accurate detection, the cellular accounting system has
to monitor the TCP sender behavior. For example, it can
observe the sender’s windows after a retransmission to ensure

3TCP checksum verification is often implemented in hardware.

7

User Equipment

Application 1

tun0

Vtund Client

Cellular ISP

Cellular Networks Wired Internet

Pkt A Pkt B Pkt C

Pkt A Pkt B Pkt C

Pkt A

Pkt B

Pkt C

Fake TCP Hdr

Fake TCP Hdr

Fake TCP Hdr

Billing System

Pkt A

Pkt B

Pkt C

Fake TCP Hdr

Fake TCP Hdr

Fake TCP Hdr

$

$

$

TCP Tunneling Proxy

Vtund Server

Pkt A

Pkt B

Pkt C

Fake TCP Hdr

Fake TCP Hdr

Fake TCP Hdr

tun0

Pkt A Pkt B Pkt C

Pkt A Pkt B Pkt C

Destination Server

Pkt A Pkt B Pkt C
NAT

Fig. 12. “Free-riding” attack process (uplink case)

that it is reduced as expected. However, this mechanism is
analogous to detecting selfish senders that do not follow the
standard TCP congestion control algorithm. Detecting selfish
senders in a middlebox is non-trivial since it is hard to reliably
distinguish if a TCP flow action is caused by the most-recently
forwarded packet or the one in the distant past [10]–[12].

One possible workaround is to retain some TCP state in
the core network. In this instance, the accounting system can
manage the client-side flow state such that it does not account
for any data packet sent by the server that has been already
ACK’ed by the client. That is, if the accounting system ob-
serves the client-side ACK, for billing purposes it could ignore
any retransmission packet whose sequence number is smaller
than the ACK. The accounting system still needs to forward
the retransmission packet to the client, since the previous
ACK could have been lost in the path between the accounting
system and the server. This solution can be brittle since a naive
implementation that blindly allows those retransmissions by
only observing the header could miss tunneling traffic in the
payload as discussed in the following section.

Another workaround is to use a TCP proxy that relays
every TCP connection between the client and the server. The
accounting system can more accurately measure the data ex-
changed between the TCP proxy and the client. This might be
viewed as extension of Performance Enhancing Proxies (PEPs)
already deployed in some cellular ISPs for Web traffic [6]. The
main drawbacks in splitting every TCP connection is the cost
given increasing mobile traffic, in addition to the TCP proxy
itself becoming the target of other attacks.

B. Free-riding Attack

An adversary can launch a “free-riding” attack against cel-
lular ISPs that take out retransmission packets from the users’
billing totals. The attack avoids the accounting mechanism by
tunneling another TCP connection inside of a fake TCP header
that masquerades as a retransmission. Figure 12 illustrates our
implementation. The “free-riding” attack requires a collaborat-
ing TCP tunneling proxy that relays the tunneled packets and
real traffic between the client and the server. For upstream
traffic, packets from the client are tunneled to the proxy using
fake TCP headers and de-tunneled at the proxy and relayed to
the destination server. For downstream traffic, the packets from
the server arrive at the proxy which tunnels them to the client,
and the client de-tunnels and passes them to the application.
In this architecture, the accounting system in the cellular core
network will only see the connections between the client and

0

10

20

30

40

50

60

70

80

90

100

110

120

ISP Accounting Total Volume

V
o
lu

m
e

(M
B

)

0

10

20

30

40

50

60

70

80

90

100

110

120

ISP Accounting Total Volume

V
o
lu

m
e

(M
B

)

11.2

112.9

ISP-1 ISP-2, 3

Payload of Retransmitted Packet

TCP/IP header of Retransmitted Packet Non-retransmitted Packet

ISP Accounting

15.3

112.9

15.7 15.7
11.211.2

Fig. 13. “Free-riding” attack results

the proxy with large numbers of retransmissions, which will
not be counted in the final bill.

We implement the TCP tunnel using the Universal
TUN/TAP driver [34]. On the client side, we run a modified
VTun daemon (vtund) that captures all the packets from ap-
plications and inserts new TCP and IP headers destined to the
tunneling proxy. For tunneled packets, we set the Maximum
Transmission Unit (MTU) to “original MTU size - TCP/IP
header size” to prevent IP-level fragmentation and reassembly
between the client and the proxy. On initialization, vtund cre-
ates a TCP connection to the proxy located in its configuration
file, and multiplexes all TCP packets from the applications
on the client device over the client-to-proxy connection. We
allow the client to configure the retransmission factor, which
represents the number of retransmission packets it would send
per packet on average. The attacker can leverage this factor
to decide the level of free riding. To evade the tunnel header
detection by the accounting system, vtund encrypts the payload
of all tunneled packets using RC4 [35]. Optionally, it applies
packet compression using the LZO algorithm [36] which is
popular for real-time packet compression/decompression.

The tunneling proxy detunnels the packets from the client
and relays the original packets to the real destination. After
decrypting (and decompressing) the payload and extracting the
original packet, the proxy forwards it to a Network Address
Translation (NAT) table. The NAT is responsible for translating
the client-side IP address and port number to those of the proxy
and vice versa. The downstream scenario works in the same
way. The proxy tunnels the packets from the server to the
client. Encryption and compression is applied to those packets
as configured in the proxy setting.

This attack is simple to implement and easy to use. The
vtund code modification consists of about 600 lines of code
(∼300 lines for tunneling and ∼300 lines for encryption and
compression). In order to use the virtual network interface
(e.g., tun0), however, one needs to root or jailbreak the client
device, but no further system-level modification is needed since
vtund runs in user space.

Free-riding Attacks in Practice: We test the attack on
three South Korean ISPs that do not account for retransmis-

8

15.5
13.9

22.0

15.3

12.2

20.5

13.8

11.7

20.1

15.6

17.6

22.1

0

5

10

15

20

25

ISP-1 ISP-2 ISP-3

T
ra

n
sf

er
 S

p
ee

d
(M

b
p

s)
Normal Tunneling Tunneling + E Tunneling + E + C

Fig. 14. Comparison of download throughputs with
SpeedTest. “Normal” implies innocent usage while “tun-
neling” implies the “free-riding” attack. E=encryption,
C=compression.

sions. We run the tunneling proxy on a machine with an Intel
Core i7 860 CPU (2.80 GHz, quad core), 4 GB physical
memory, and a 1 Gbps network interface card (NIC), and used
a Samsung Galaxy S3 as the client. The proxy runs on Ubuntu
12.04 and the client runs on Android 4.2.2. The experiments
were executed by downloading a 100 MB file via wget. We
have exercised the tests with various retransmission factors (up
to 100), and confirmed that all of the attacks work successfully
with these ISPs. Figure 13 compares actual transferred content
size vs. accounted volume by ISPs, using a retransmission
factor of 10. While we see a slight difference in the accounted
volumes depending on the accounting policies regarding re-
transmission packet headers (e.g., one ISP accounts for TCP/IP
headers of retransmission packets while the others do not), we
find that an attacker can use between 7.4 and 10.1 times more
cellular data than accounted for by the ISP.

We next measure the effective bandwidth used by the
tunneling proxy. First, we use the SpeedTest app [37] to
measure the download throughputs from a server located in
Seoul, South Korea. We repeated the tests five times and
calculated the average numbers. Figure 14 compares the results
in the presence or absence of tunneling for all three ISPs.
We see that the download throughputs with tunneling are
between 15.6 to 22.1 Mbps when we apply both encryption and
compression. These are very similar to those without tunneling,
which implies that the tunneling overhead can be hidden by
compression. The tunneling throughputs without compression
show 11.7 to 20.1 Mbps, which is 9% to 16% lower than the
normal throughputs due to the additional overhead of tunneling
and encryption. The throughputs appear adequate for practical
use.

To estimate how practical this attack can be, we measure
the front page loading time with nine popular Web sites for
smartphones, including Facebook, YouTube, Bing, NYTimes,
etc. We use the Chrome Web browser in combination with
WebWait [38] and repeat the experiments 10 times. To reduce
errors, we flush the browser cache before loading a page.
Figure 15 shows the average loading time with one cellular
ISP. Overall, tunneling shows similar loading times. Tunneling
traffic with encryption but without compression, we observed
a 9.3% slow down in average loading time. With compression,
we observed a modest speedup compared to normal browsing.

0

1

2

3

4

5

6

7

Lo
ad

in
g

tim
e

(s
)

Normal Tunneling Tunneling + E Tunneling + E + C

Fig. 15. Front page loading time with popular Web sites.
Normal implies innocent usage while “tunneling” implies the
“free-riding” attack. E=encryption, C=compression.

The latency increase is mainly due to the overhead from extra
tunneling headers, encryption, compression, and at least an
extra hop on the network path to include the proxy. However,
we believe the free cellular data usage is still an attractive
option despite slight performance degradation.

Difficulty of Detecting “Free-Riding” Attacks: The ac-
counting system might attempt to detect the “free-riding”
attack in two ways. First, it could try to detect spurious re-
transmission. However, this approach has the similar difficulty
as in the “usage-inflation” attack. As long as the attacker
sets the retransmission factor to be low enough and adds
enough randomness in retransmission, it would be non-trivial
to reliably detect the attack. In addition, since the proxy
and the client collude with each other, they can make the
retransmission packets completely legitimate by intermittently
exchanging ACK packets. Furthermore, the client can spread
the TCP packets over multiple colluding proxies, which would
make the attacker harder to detect by an accounting system.

Second, the accounting system may attempt to compare
the payloads from the original and retransmission packets.
One efficient approach might be to utilize the TCP checksum.
That is, the accounting system stores the TCP checksum of
the original packet and sees if the retransmission packet with
the same starting sequence number carries a matching TCP
checksum. Non-matching packets can be safely discarded. This
policy looks reasonable since it can avoid expensive byte-by-
byte comparison of the original and retransmission packets
from full DPI. However, we find two problems here. First, in
order to verify the checksum of the retransmission packets,
the accounting system has to traverse all payload bytes to
compute the checksum. This could be expensive on high-speed
cellular core networks. Second, the TCP specification allows
the retransmission payloads to be of a different size from the
original packets [4]. If the attacker indeed uses a different
payload size for the retransmission packet, the accounting
system cannot rely on the checksum of the original packet.
Later, we propose a light-weight DPI that reliably detects the
attack on commodity hardware.

V. DEFENDING AGAINST FREE-RIDING ATTACKS

We consider defense strategies against the TCP retransmis-
sion attacks discussed in the previous section. If an ISP adopts
a “blind” accounting policy that charges for retransmission

9

Disk

RX Queue 0

DFI Thread 0

Disk

Thread

CPU Core 0

…

10 Gbps NICSymmetric RSS

Disk

Thread

RX Queue 1

DFI Thread 1

Disk

Thread

CPU Core 1

RX Queue N-1

DFI Thread N-1

Disk

Thread

CPU Core N-1

Disk

Thread

Disk

Thread

Fig. 16. Overall architecture of Monbot. N is the number of
cores in a machine.

packets, it has to protect its subscribers from spurious retrans-
mission. Unfortunately, we do not know of any reliable way
to detect such attacks in a middlebox without false positives.
If the attackers are smart enough to simulate the behavior of
poorly-provisioned areas, it would be non-trivial to detect the
attack. Instead, we focus on detecting “free-riding” attacks
in the ISPs with a “selective” accounting policy that ignores
legitimate retransmission. We implement an accounting system
called Abacus that runs DPI on the retransmission packets to
detect tunneling attacks. Abacus extends Monbot [5], a highly-
scalable flow monitoring system on commodity hardware, to
drastically reduce the flow buffer requirement by probabilisti-
cally verifying the payload of retransmission packets. We first
provide some background on Monbot, and show how Abacus
implements deterministic and probabilistic DPI that can handle
on the order of 105 concurrent flows in high-speed cellular core
networks.

A. Background of Monbot

Figure 16 shows the overall architecture of Monbot. The
key design principle is parallel and batch processing. For high-
speed packet I/O, Monbot uses the PacketShader I/O Engine
(PSIO) [39] that bypasses the heavyweight kernel networking
stack and delivers a batch of incoming packets from NICs
into the user-level process at speeds between 10 Gbps and
100 Gbps. When packets arrive at the system, they are evenly
distributed to multiple CPU cores using Symmetric Receive-
Side Scaling (S-RSS) [5]. S-RSS ensures to map the packets
in the same TCP connection to the same CPU core. This way,
a thread affinitized to one CPU core can process all packets
in a TCP connection without sharing the flow management
state with other threads. This eliminates lock contention and
improves the scalability with multiple CPU cores. Flow man-
agement is implemented on each Deep Flow Inspection (DFI)
thread independently of each other. Depending on the available
memory, Monbot allows 400K to 1 million concurrent flows
on a 10 Gbps network.

Monbot has been installed on a cellular core network of
one of the largest commercial ISPs in South Korea. It has
monitored one of the ISP’s 10 Gbps links for seven days
without a single packet drop. It has analyzed 370 TBs of packet
data and 8.3 billion TCP connections, and produced a SHA1
hash per each 4KB content chunk in all TCP connections.
For the measurement period, we have seen as many as 270K
concurrent flows (including idle flows) and 1.1 million TCP
connections per minute [5].

W

Flow 0

Retransmitted Packet! (Seq = 1024)

Accounting Thread 0

RX Queue 0

Compare for

payload length!

Packet (Src 102.58.35.5 / Dest 142.98.7.90)

W

Buffer for new dataACKed

(a) Deterministic DPI

Flow 0

Retransmitted Packet! (Seq = 1024)

Accounting Thread 0

RX Queue 0

Calculate &

compare

random offsets!

Packet (Src 102.58.35.5 / Dest 142.98.7.90)

Base Seq Num: 0

A h

p

1

f

i

f

r

o a

b

s

s

H

t

\

p

m

t

b

Flow Key

(b) Probabilistic DPI

Fig. 17. Attack detection with retransmission packets

Abacus extends Monbot to accurately account for a large
number of concurrent flows while reliably detecting any “free-
riding” attacks. It reuses the packet I/O and flow management
modules of Monbot but disables other features not needed
for cellular accounting such as SHA1 hash calculation and
TCP/HTTP-level traffic analysis. Abacus produces per-flow
accounting logs such as numbers of total accountable bytes,
transferred packets, innocent retransmission packets (including
duplicate ACKs) as well as retransmission packets suspected
to be malicious. For this, we have modified 1,880 lines of
the original Monbot code. To catch the “free-riding” attack,
Abacus supports DPI in two different modes, which we will
explain in the following sections.

B. Deterministic DPI

Deterministic DPI (d-DPI) buffers the original TCP seg-
ments and verifies that retransmission and original packets
have identical contents. It conducts byte-by-byte comparisons
of the original and retransmitted payloads, and flags an attack if
there is any disparity. One challenge in d-DPI is to determine
the buffering amount of a flow. Theoretically, one needs to
buffer (RTT x bandwidth) amount of flow data, but since per-
flow RTT and effective bandwidth change on a short time scale,
we use the receive window size (e.g., advertisement window
size) in each direction of a TCP connection. Since TCP flow
control dictates that the sender’s window should not be larger
than the receive window size, this value should give an upper
bound of the send window on one end.

Implementation: d-DPI is straightforward to implement.
Abacus creates a new flow entry when it sees a 3-way
handshake of a TCP connection. Each flow entry has two flow
buffers whose sizes simulate those of the send windows of
the client and the server. We calculate the amount of flow
data that Abacus holds as follows. Let the largest sequence
number the Abacus has seen from one end as S. We estimate
the maximum send window size as the receive window size,
W, advertised by the receiver. Then, the system needs to buffer
any sequence numbers ≥ (S - W) assuming no out-of-order
packet delivery. However, W could change on every ACK and
packets can be delivered out of order in practice. So, we decide
to buffer any sequence numbers ≥ (S - 2 x W) where W is the
maximum receive window size advertised by the other end. As
S advances, we slide the flow buffer window to monitor the
right window range.

We optimize the buffer usage by lazy memory allocation.
Instead of allocating the entire flow buffer to the maximum

10

Base Sequence Number (4B)

𝐵𝑦𝑡𝑒𝑂𝑓𝑓1 𝐵𝑦𝑡𝑒𝑂𝑓𝑓2 𝐵𝑦𝑡𝑒𝑂𝑓𝑓3 𝐵𝑦𝑡𝑒𝑂𝑓𝑓4 𝐵𝑦𝑡𝑒𝑂𝑓𝑓5

𝐵𝑦𝑡𝑒𝑂𝑓𝑓6 𝐵𝑦𝑡𝑒𝑂𝑓𝑓7 𝐵𝑦𝑡𝑒𝑂𝑓𝑓8 𝐵𝑦𝑡𝑒𝑂𝑓𝑓9 𝐵𝑦𝑡𝑒𝑂𝑓𝑓10

𝐵𝑦𝑡𝑒𝑂𝑓𝑓11 𝐵𝑦𝑡𝑒𝑂𝑓𝑓12 𝐵𝑦𝑡𝑒𝑂𝑓𝑓13 𝐵𝑦𝑡𝑒𝑂𝑓𝑓14 𝐵𝑦𝑡𝑒𝑂𝑓𝑓15

𝐵𝑦𝑡𝑒𝑂𝑓𝑓16 𝐵𝑦𝑡𝑒𝑂𝑓𝑓17 𝐵𝑦𝑡𝑒𝑂𝑓𝑓18 𝐵𝑦𝑡𝑒𝑂𝑓𝑓19 𝐵𝑦𝑡𝑒𝑂𝑓𝑓20

𝑂𝑓𝑓1..5 = [BSN..BSN+1023]

𝑂𝑓𝑓6..10 = [BSN+1024..BSN+2047]

𝑂𝑓𝑓11..15 = [BSN+2048..BSN+3071]

𝑂𝑓𝑓16..20 = [BSN+3072..BSN+4095]

𝑾

𝑾

Fig. 18. Flow Table with Sample Entries for p-DPI (n = 5)

receive window size, we allocate a small buffer (e.g., 4KB)
initially and switch to a larger buffer (e.g., as much as 16 MB)
as we need to buffer more packets. To implement this, Abacus
benefits from efficient user-level memory allocation of Monbot
that reduces the overhead from frequent memory re-allocation.
More information can be found in [5].

C. Probabilistic DPI

While d-DPI guarantees to detect all possible “free-riding”
attacks in malicious retransmission, it requires a large amount
of memory and high memory bandwidth in high-speed net-
works. We overcome these weaknesses with probabilistic DPI
(p-DPI). The basic idea is to store the packet data by sampling
and see if the retransmission packets have the identical values
for the sampled data. For example, if we sample 5 bytes per
each 1000-byte packet, we can reduce the buffer memory re-
quirement by a factor of 200. In this way, we can significantly
reduce the memory size and memory bandwidth.

Implementation: The implementation of p-DPI (p-DPI) is
similar to that of d-DPI except that p-DPI buffers sampled
flow data. p-DPI samples n bytes per each 1024-byte flow
data at random. For this, we allocate a flow table per each
flow direction (e.g., upstream and downstream) that consists
of a set of sample entries (Figure 18). Each sample entry has
a 4-byte base sequence number (bsn) and n-byte sampled data.
Each sampled byte on the entry is randomly chosen from the
sequence number space of [bsn, bsn + 1023]. The bsn for the
first sample entry is set to the initial sequence number (isn)
taken from the SYN packet (and SYN/ACK packet for the
opposite direction), and it increments by 1024 bytes per each
entry in the flow table. The window of the monitored flow data
is tracked in the same way as in d-DPI.

To limit successful guessing of the sampled byte locations,
we randomize those locations for each flow. The sampled
byte locations in each entry are determined by running a hash
function with (per-flow secret key, bsn for the entry) as input.
The per-flow secret key is generated by HMACsecret key(nonce)
at connection setup time where the nonce is a 8-byte random
number generated per each flow and the secret key is the
system-wide key known only to Abacus. The secret key is
rotated once every day when the system load is low (e.g., early
in the morning). Any hash function is fine as long as its output
size is (10*n) bits or larger. For the current implementation,
we use the Bernstein hash function [40] that produces a 64-bit
output.

The sampled byte location is calculated as follows. Sup-
pose the hash function produces K as the output. Then, we
determine the offsets of the n bytes as K[0..9], K[10..19], ...,
K[10(n−1)..10n−1] where K[x..x+9] represents a 10-bit number

0
10
20
30
40
50
60
70
80
90

100

0 100 200 300 400 500 600 700 800 900 1,000

D
et

ec
ti

o
n

 P
ro

b
ab

il
it

y
 (

%
)

of Modified Bytes in a Retransmission Packet

0.1% 0.5%

1 % 5 %

10 %

(369B, 90%)

Sampling Rates

Fig. 19. “Free-riding” attack detection probability for various
sampling rates (0.1%, 0.5%, 1%, 5%, 10%).

taking the xth to (x+9)th bits from the least significant bit
position. That is, we sample n bytes whose sequence numbers
correspond to

(bsn+K[0..9]),(bsn+K[10..19]), ...,(bsn+K[10(n−1)..10n−1])

In this way, we avoid storing the offsets or sequence numbers
for each sampled byte location. Consequently, we trade the
memory space and memory bandwidth for hash computation,
which is a reasonable choice given the trend that the processor
speed is much faster than memory bandwidth.

When a retransmission packet arrives at Abacus, it looks
up a relevant flow entry with four tuples (e.g., source and
destination IPs and port numbers) of the connection. If the
flow entry exists, the system calculates the bsn for the sample
entry that the packet belongs to. Then, it runs the hash function
with the bsn and the flow key as input, and finds the sampled
locations for content comparison. In case the sequence number
space of the packet spans over more than one sample entry, it
repeats the process for others as well. Given that a typical
MTU size is 1500 bytes, the verification process per each
retransmission packet ends in one or two rounds.

Choice of n: In choosing n, the administrator faces a
tradeoff between memory space efficiency vs. attack detection
accuracy. As we decrease n, we can reduce the required buffer
memory but risk incurring false negatives, allowing the attacker
to evade the detection. On the other hand, a large n can increase
the detection accuracy, but the benefit of p-DPI decreases.
Here, we probe the right size of n by calculating the detection
probability. Assume Abacus samples y bytes from an original
packet and the attacker employs x bytes of the retransmission
packet for the “free-riding” attack while keeping the remaining
bytes intact. For a packet size of 1000 bytes, the attack
detection probability in the retransmission packet is

1− (1000−y)Cx

1000Cx
(1)

where aCb represents
(

a
b

)
. Figure 19 shows the detection

probability of an attack packet as a function of x over different
sampling rates. We see that even for a small n such as 5
(0.5% for a 1 KB packet), we can detect the attack with 90%
or higher probability if the attack packet modifies 36.9% or
larger fraction of the payload. Furthermore, if the attacker uses
multiple attack packets in a flow, the detection probability gets

11

0

5

10

15

20

25

30

35

0 600 1200 1800 2400 3000 3600

F
lo

w
 B

u
ff

er
 S

iz
e

(G
B

)

Seconds past 10:00pm on July 8th, 2012

d-DPI

p-DPI

Fig. 20. Aggregate flow buffer sizes of d-DPI and p-DPI on
a 10 Gbps cellular core link (10-11pm KST, 7/8/2012).

quickly close to 100%. This means that as long as we sample
any positive number of bytes in each packet, we can detect all
practical “free-riding” attacks with a high probability.

D. Flow Buffer Requirements

To estimate the aggregate flow buffer size needed for d-
DPI and p-DPI in a real cellular core network, we collected
the maximum receive window sizes of all TCP connections at
a 10 Gbps 3G core link of one of the largest commercial ISPs
in South Korea [5]. We measured the data for one hour in the
peak time of a working day (10pm to 11pm on July 8th, 2012)
and calculated the aggregate buffer size at each second. The
number of concurrent TCP connections during the time ranges
from 45,647 to 114,213 with an average of 103,183.

Figure 20 compares the buffer memory requirements of
d-DPI and p-DPI. The sampling rate of p-DPI is set to 0.5%
(n=5 per 1 KB). We see that the memory requirement of d-DPI
ranges from 11 to 31 GB with the average of 27 GB while p-
DPI requires 0.05 to 0.15 GB with the average of 0.13 GB. As
expected, p-DPI reduces the memory requirement by a factor
of 200, and it implies that it can scale to 1 million concurrent
flows with as small memory as 2 GB.

VI. EVALUATION

A critical requirement for an effective defense is scaling
to large numbers of concurrent flows. We evaluate the perfor-
mance of Abacus for detection the “free-riding” attacks in a
realistic setting to see how well it can meet this requirement.
To generate flows, we run a custom HTTP server paired with
a traffic generator client, pulling data from the server. Both
the server and client were running on machines with dual
Intel Xeon E5-2690 CPUs (2.90 GHz, octacore), 64 GB of
physical memory, and an Intel 10G NIC with 82599 chipsets.
We tested Abacus in d-DPI mode on a machine with the same
specification as the server, but tested the p-DPI mode on a
desktop-level machine with an Intel i7-3770 CPU (3.40 GHz,
quadcore) and 16 GB of physical memory with a 10G NIC.
All machines ran on Debian 6.0.7 (Linux kernel ver:2.6.32)
and were connected to a 10 Gbps Arista 7124 switch. Abacus
monitors all the packets exchanged between the server and the
client via port mirroring.

A. Microbenchmark

We measure the scalability of Abacus against a variable
number of concurrent flows. On the client side, we run a
custom traffic generator that repeatedly downloads a small
file (12 KB) from the server over HTTP. The traffic generator
creates a new connection for each file download. We monitored
the behavior of Abacus as we increased the concurrent flows
from 10K to 320K. The Linux TCP stack does not scale well
on a multicore system with a large number of concurrent
flows [41], so we used a user-level TCP stack on PSIO that we
built for the server and the client. Further details of our TCP
stack is beyond the scope of this paper. Our user-level TCP
stack scales linearly to the number of CPU cores and saturates
the 10 Gbps link even when the flow size is small.

Figure 21(a) and Figure 21(b) compare the CPU and
memory consumption of Abacus over a varying number of
concurrent flows. The accounting volume by Abacus is ac-
curate: it produces the correct number of total transferred
bytes except retransmission packets. The traffic between the
server and the client fully utilizes the 10 Gbps link regardless
of the concurrency level. We observe that d-DPI works well
up to 160K concurrent flows but it starts to drop packets
at 320K flows. The memory usage grows linearly with the
number of flows, showing 25.9 GB at 160K flows and 53.6
GB at 320K flows. In contrast, p-DPI does not drop any
packet even with 320K concurrent flows. The memory usage
is 391.0 MB at 320K flows and 202.7 MB at 160K flows.
The CPU consumption of d-DPI stays around 500% to 600%
(where, 100% = 1 CPU core is fully utilized) for 160K flows
and below but grows to 876% at 320K flows, presumably due
to the bottleneck in the memory bandwidth. In contrast the
CPU usage of p-DPI stays under 100% even at 320K flows,
indicating a good scalability for Abacus in p-DPI mode for a
large number of flows that saturate a 10 Gbps link, even on a
low-powered desktop machine.

B. Real Traffic Simulation

We measure the performance of Abacus against the “free-
riding” attacks in a realistic environment. We build a cellu-
lar traffic generator that replays the 3G cellular traffic logs
measured in a commercial cellular ISP in South Korea [5].
Each entry in the logs consists of the SHA1 hash of the
entire flow content and a list of 4 KB content chunk hashes
along with a total size and start/end timestamps. The client
issues an HTTP request with the content hash as the key and
the server dynamically creates a response that consists of the
chunks matching the content key and sends it to the client. The
content of each chunk is filled with a repeated pattern of SHA1
chunk hashes. We originally built this for testing redundancy
elimination (RE) caching proxies, and found it to be a good fit
to simulate application layer content over 3G networks. The
logs were extracted from the real 3G traffic at a daily peak hour
(from 11pm to 12am on July 7th, 2012) in the commercial
cellular ISP. The number of replayed flows was 61 million,
totaling 2.79 TB in volume, and the average bandwidth during
the time was 4.35 Gbps. To reduce the experiment time, we
replayed the logs slightly faster so that the bandwidth stays
between 5 to 8 Gbps.

During the log replay, we injected 100 flows that simulated
“free-riding” attacks. Each flow randomly adds retransmission

12

0

10

20

30

40

50

60

0
100
200
300
400
500
600
700
800
900

1000

10k 20k 40k 80k 160k 320k

M
em

or
y

U
sa

ge
 (G

B
)

C
PU

 U
sa

ge
 (%

)

Number of Concurrent Flows

CPU Usage Memory Usage

(a) d-DPI

0
50
100
150
200
250
300
350
400
450

0

20

40

60

80

100

120

10k 20k 40k 80k 160k 320k

M
em

or
y

U
sa

ge
 (M

B
)

C
PU

 U
sa

ge
 (%

)

Number of Concurrent Flows

CPU Usage Memory Usage

(b) p-DPI

Fig. 21. Comparison of CPU and memory usages of Abacus in d-DPI and p-DPI modes

packets with different payload from the original packets. We
find that d-DPI and p-DPI report all of the attack flows
accurately.

VII. RELATED WORKS

A. Cellular Network Analysis

There have been a number of works that characterize the
cellular network traffic. Woo et. al. characterize the 3G traffic
at a 10 Gbps backhaul link of a large commercial ISP, and
report that over 95% of the 3G traffic is based on TCP and
up to 59% of the traffic is redundant on the content level [5].
They find that the most flows are small and short-lived with
the number of concurrent flows as large as 270K. Huang et.
al. report similar characteristics (e.g., the dominance of TCP,
short flows, and small sizes) in an LTE network [6]. They
find that the retransmission rates are low in general such
that 38.1% of the flows have zero retransmission and note
that most packet drops are masked by physical/MAC-layer
retransmission. While we also observe low retransmission
rates with average flows, we do find that a small number
of flows suffer from high retransmission rates, which can be
exploited by TCP retransmission attacks. They also reveal
that PEPs intercept all TCP connections with server port 80
or 8080. These proxies terminate the client-side connections
and take out spurious retransmission from the server from
the bill. In our experiment, however, we find that one can
still launch attacks with port 80 in one of the U.S. ISPs, and
all of them do not terminate the connections with port 8000.
This implies that the attackers can use a non-standard HTTP
port to launch TCP retransmission attacks. Amrutkar et. al.
suggest a multidimensional diagnosis technique to find the root
cause of poor end-to-end delays in a 3G network [42]. Their
technique automatically pinpoints the root cause for the poor
performance among applications, devices, and networks. They
find that a particular device model can be a culprit of a high
latency and that a gaming site was found to be the root cause
for high latencies to a large number of subscribers.

Previous works have pointed out security problems with
middleboxes (e.g., NATs or firewalls) in cellular networks.
Wang et. al. find that four cellular ISPs allow IP spoofing
such that a malicious client punches a hole in the NAT with
an IP address of a victim, through which a colluding server
blasts attack traffic [43]. This implies that an adversary can
launch the “usage-inflation” attack even without redirecting the
victim to a malicious site. They also find that some firewalls

do not remove the flow state even after connection closure,
which is confirmed in our experiments as well. Qian et. al.
introduce a new attack where an off-path attacker (not man-
in-the-middle) hijacks a TCP connection and injects malicious
content [44]. Again, this can be exploited in the context of the
usage-inflation attack without the knowledge of the victim.

B. Cellular Data Accounting

Peng et. al. have revealed that attackers can exploit a few
policy loopholes in cellular accounting systems [7], [8]. The
“toll-free data access attack” allows the attackers to bypass
cellular accounting by using the DNS port whose data usage
is not accounted by some ISPs. The authors also introduce a
“stealth-spam attack” where a malicious attacker injects a large
volume of spam data after the client closes the connection.
While we observe the same outcomes in our work (e.g., free
usage or usage inflation), our attacks stand on the fundamental
difficulty in inferring the root cause of TCP retransmission in
the middlebox. In comparison, the DNS port abuse seems to
be easy to block as we notice that cellular ISPs in the U.S. no
longer allow DNS port tunneling [32].

Tu et. al. find the cellular data accounting gap in as
the user moves from one network to another [9]. They see
as much as 69.6% of accounting disparity when they use
UDP packets while roaming since the previously buffered
packets in one network would drop when inter-system or intra-
system handoffs occur (e.g., 2G↔3G, 3G↔LTE). However,
we suspect the accounting disparity is not severe in real life
given the heavy dominance of TCP in cellular networks [5],
[6].

Raj et. al. propose splitting the cellular data bill by having
the content providers pay for the traffic generated by the
users visiting their websites [45]. They suggest accounting the
cellular data in the client devices using ARM TrustZone [46].
We think data accounting in the client side could be extended
to mitigate both TCP retransmission attacks by preventing
“free-riding” attack from the client and by reporting the re-
transmission amount to the cellular ISPs. However, deployment
of such a scheme could be challenging since it requires
modification of all client devices. Instead, we mainly focus
on the middlebox-based solution in this work.

Earlier, we have measured TCP retransmission accounting
policies with five cellular ISPs in the U.S., and South Korea,
and revealed the vulnerabilities in the accounting systems [32].
In this work, we extended the measurements to 12 ISPs in

13

6 countries, experimented with the attacks in various real-
world environments, showed the practicality of “free-riding”
attacks, and discussed the solution space in depth. We have
also designed and implemented Abacus, a highly-scalable
accounting system, and showed that one can detect “free-
riding” attacks on a low-powered desktop machine even when
there are 100Ks of concurrent flows.

VIII. CONCLUSION

In this paper, we have shown that current cellular ac-
counting systems are vulnerable to TCP retransmission attacks
without proper defense mechanisms in place. We characterized
12 ISPs in 6 countries and demonstrated that an attacker can
arbitrarily inflate the data usage without the knowledge of the
target users or the attacker can tunnel data for free over TCP
retransmissions, depending on the policies of the ISPs. The
“usage-inflation” attack is launched from a remote server and
does not require modification of the target devices. We have
also shown that the “free-riding” attack is practical such that
the attacker can use 15.6 to 22.1 Mbps of free bandwidth.

The fundamental challenge in defending these attacks
stems from the fact that middlebox-based accounting systems
cannot reliably infer the states of two TCP end nodes. We think
that it is difficult to defend against the “usage-inflation” attack
without false positives, and propose to detect the “free-riding”
attack with a “selective” accounting policy. As a solution,
we have implemented and evaluated Abacus that effectively
manages 100Ks of concurrent flows with a small amount of
memory and CPU usage while reliably detecting the “free-
riding” attack.

IX. ACKNOWLEDGMENT

We would like to thank Nico Golde, Keon Jang, Hae-
woon Kwak and Qiuyu Xiao for providing great help in
carrying out the retransmission accounting policy measurement
tests. We also appreciate many insightful comments from
anonymous reviewers. This research was supported, in part,
by the National Research Foundation of Korea (NRF) grant
#2012R1A1A1015222, the U.S. Department of Health and
Human Services (SHARPS program) under Award Number
90TR0003-01, and the TerraSwarm Research Center, one of
six centers supported by the STARnet phase of the Focus
Center Research Program (FCRP) a Semiconductor Research
Corporation program sponsored by MARCO and DARPA.

REFERENCES

[1] United Nations International Telecommunication Union Aggregate
Data. http://www.itu.int/en/ITU-D/Statistics/Documents/statistics/2013/
ITU Key 2005-2013 ICT data.xls, 2013.

[2] M. Allman, V. Paxson, and W. Stevens. TCP Congestion Control.
RFC 2581 (Proposed Standard), April 1999. Obsoleted by RFC 5681,
updated by RFC 3390.

[3] M. Allman, V. Paxson, and E. Blanton. TCP Congestion Control. RFC
5681 (Draft Standard), September 2009.

[4] J. Postel. Transmission Control Protocol. RFC 793 (Standard),
September 1981. Updated by RFCs 1122, 3168, 6093, 6528.

[5] S. Woo, E. Jeong, S. Park, J. Lee, S. Ihm, and K. Park. Comparison of
Caching Strategies in Modern Cellular Backhaul Networks. In Proceed-
ings of the International Conference on Mobile Systems, Applications
and Services (MobiSys), 2013.

[6] J. Huang, F. Qian, Y. Guo, Y. Zhou, Q. Xu, Z. M. Mao, S. Sen, and
O. Spatscheck. An In-depth Study of LTE: Effect of Network Protocol
and Application Behavior on Performance. In Proceedings of the ACM
Special Interest Group on Data Communication (SIGCOMM), 2013.

[7] C. Peng, G. Tu, C. Li, and S. Lu. Can We Pay for What We Get in 3G
Data Access? In Proceedings of the Annual International Conference
on Mobile Computing and Networking (MobiCom), 2012.

[8] C. Peng, C. Li, G. Tu, S. Lu, and L. Zhang. Mobile Data Charging: New
Attacks and Countermeasures. In Proceedings of the ACM Conference
on Computer and Communications Security (CCS), 2012.

[9] G. Tu, C. Peng, C. Li, X. Ma, H. Wang, T. Wang, and S. Lu. Accounting
for Roaming Users on Mobile Data Access: Issues and Root Causes.
In Proceedings of the International Conference on Mobile Systems,
Applications and Services (MobiSys), 2013.

[10] S. Floyd and K. Fall. Promoting the Use of End-to-End Congestion
Control in the Internet. In IEEE/ACM Transactions on Networking
(TON), volume 7(4), pp. 458-472, 1999.

[11] S. Savage, N. Cardwell, D. Wetherall, and T. Anderson. TCP Con-
gestion Control with a Misbehaving Receiver. In ACM SIGCOMM
Computer Communication Review (CCR), volume 29(5), pp. 71-78,
1999.

[12] A. Kuzmanovic and E. W. Knightly. Receiver-centric congestion control
with a misbehaving receiver: Vulnerabilities and end-point solutions.
In The International Journal of Computer and Telecommunications
Networking, volume 51(10), pp. 2717-2737, 2007.

[13] 3GPP. Universal Mobile Telecommunications System. http://www.3gpp.
org/Technologies/Keywords-Acronyms/article/umts.

[14] 3GPP. LTE. http://www.3gpp.org/LTE/.
[15] 3GPP. ETSI TS 25.410. 3rd Generation Partnership Project; Technical

Specification Group Radio Access Network; UTRAN Iu Interface:
general aspects and principles.

[16] 3GPP. ETSI TS 32.200. Telecommmunication management; Charging
management; Charging principles.

[17] 3GPP. ETSI TS 32.215. Telecommunication management; Charging
management; Charging data description for the PS domain.

[18] 3GPP. ETSI TS 32.251. 3rd Generation Partnership Project; Technical
Specification Group Services and System Aspects; Telecommunication
management; Charging management; Packet Switched (PS) domain
charging.

[19] 3GPP. ETSI TS 29.060. General Packet Radio Service; GPRS Tunneling
Protocol across the Gn and Gp interface.

[20] 3GPP. ETSI TS 23.060. General Packet Radio Service (GPRS); Service
description; Stage 2.

[21] 3GPP. ETSI TS 32.240. 3rd Generation Partnership Project; Technical
Specification Group Services and System Aspects; Telecommunication
management; Charging management; Charging architecture and princi-
ples.

[22] G. Fairhurst and L. Wood. Advice to link designers on link Automatic
Repeat reQuest (ARQ), 2002.

[23] H. Inamura, G. Montenegro, R. Ludwig, A. Gurtov, and F. Khafizov.
TCP over Second (2.5G) and Third (3G) Generation Wireless Networks,
2003.

[24] J. Gettys. Bufferbloat: Dark Buffers in the Internet. In IEEE Internet
Computing, volume 15(3):96, 2011.

[25] H. Jiang, Y. Wang, K. Lee, and I. Rhee. Tackling Bufferbloat in
3G/4G Networks. In Proceedings of the ACM SIGCOMM Conference
on Internet Measurement Conference (IMC), 2012.

[26] Amazon web services. Amazon Elastic Compute Cloud (Amazon EC2).
http://aws.amazon.com/ec2/.

[27] GNU Operating System. Wget. http://www.gnu.org/software/wget/.
[28] Gadgetcat. tcpdump on Android, 2011. http://gadgetcat.wordpress.com/

2011/09/11/tcpdump-on-android/.
[29] n1mda-dev. Pirni native iPhone ARP spoofer and network sniffer. http:

//code.google.com/p/n1mda-dev/wiki/PirniUsageGuide.
[30] KakaoTalk. http://www.kakao.com/talk/en/.
[31] S. Alcock and R. Nelson. Application flow control in youtube video

streams. ACM SIGCOMM Computer Communication Review, 41(2):24–
30, 2011.

14

[32] Y. Go, D. F. Kune, S. Woo, K. Park, and Y. Kim. Towards Accurate
Accounting of Cellular Data for TCP Retransmission. In Proceedings
of the ACM International Workshop on Mobile Computing Systems and
Applications (HotMobile), 2013.

[33] O. Dondurmacioglu. Top-5 Bandwidth Hungry Mobile Apps on a
Wireless LAN. http://www.arubanetworks.com/blogs/top-5-bandwidth-
hungry-mobile-apps-on-a-wireless-lan/.

[34] M. Krasnyansky and M. Yevmenkin. Universal TUN/TAP driver. http:
//vtun.sourceforge.net/tun.

[35] Wikipedia. RC4. http://en.wikipedia.org/wiki/RC4.
[36] M. F. X. J. Oberhumer. LZO. http://www.oberhumer.com/opensource/

lzo/.
[37] Ookla. Speedtest. http://www.speedtest.net.
[38] M. Mahemoff. Webwait.com. http://webwait.com.
[39] S. Han, K. Jang, K. Park, and S. Moon. PacketShader: a GPU-

accelerated Software Router. In Proceedings of the ACM Special
Interest Group on Data Communication (SIGCOMM), 2010.

[40] A. Partow. General Purpose Hash Function Algorithms. http://www.
partow.net/programming/hashfunctions/index.html.

[41] S. Han, S. Marshall, B. Chun, and S. Ratnasamy. MegaPipe: A New
Programming Interface for Scalable Network I/O. In Proceedings of the
USENIX Symposium on Operating Systems Design and Implementation
(OSDI), 2012.

[42] C. Amrutkar, M. Hiltunen, T. Jim, K. Joshi, O. Spatscheck, P. Traynor,
and S. Venkataraman. Why is My Smartphone Slow? On The Fly
Diagnosis of Poor Performance on the Mobile Internet. In Proceedings
of the Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), 2013.

[43] Z. Wang, Z. Qian, Qiang Xu, Z. M. Mao, and M. Zhang. An Untold
Story of Middleboxes in Cellular Networks. In Proceedings of the ACM
Special Interest Group on Data Communication (SIGCOMM), 2011.

[44] Z. Qian and Z. M. Mao. FlowTags: Enforcing Network-Wide Policies
in the Presence of Dynamic Middlebox Actions. In Proceedings of the
IEEE Security and Privacy (Oakland), 2012.

[45] H. Raj, S. Saroiu, A. Wolman, and J. Padhye. Splitting the Bill for
Mobile Data with SIMlets. In Proceedings of the ACM International
Workshop on Mobile Computing Systems and Applications (HotMobile),
2013.

[46] ARM Security Technology. Building a Secure System using TrustZone
Technology. ARM Technical White Paper, 2005–2009.

15

