Towards an Open Middlebox Platform for Modular Function Composition

Shinae Woo*"#4¢" ' Keon Jang*, Dongsu Han, and KyoungSoo Park

KAIST,

*Microsoft Research

shinae @ndsl.kaist.edu, keonjang @ gmail.com, {dongsuh, kyoungsoo} @ee.kaist.ac.kr

With the growing diversity of middlebox features,
software-based middleboxes have become increasingly
popular over traditional hardware-based middleboxes [1,
2]. The movement towards software-based implemen-
tation enabled middleboxes to consolidate multiple func-
tionalities into a single box [7]. Such consolidation, how-
ever, introduces fundamental challenges in developing
high-performance middleboxes.

First, existing networking stacks for end hosts, lack
support for extracting flow-level information, which is
often required for middlebox applications. Also, differ-
ent applications may be interested in different pieces of
information. For example, a WAN accelerator that per-
forms redundancy elimination is interested in the pay-
load, whereas a firewall that detects a port scan may be
interested in the first packet of each flow (e.g., a SYN
packet). However, no existing framework effectively
handles issues in multiplexing applications, making con-
solidation more challenging.

Second, middlebox applications often take actions in
response to a diverse set of transport- and application-
flow level “events”. For example, an application pro-
tocol parser may only be interested in established TCP
flows while application-specific events can be of interest
to others. A Web firewall may particularly be interested
in HTTP requests, whereas an anti-virus scanner may be
interested in various forms of file transfers (e.g., e-mail,
Skype, and Dropbox). Nevertheless, no existing frame-
work allows setting up such “flexible” events.

Finally, existing platforms [3, 4, 7] do not provide a
programmable processing pipeline. A programmable pi-
pleline must 1) be able to dynamically direct the pro-
cessing of a packet or flow from one module to another
and 2) efficiently multiplex the inputs and outputs of
these modules. While xOMB takes a first step, its usage
model is limited to protocol acceleration [3]. To support
multi-protocol acceleration, xOMB requires setting up a
chain of machines. SDN-based approaches [4] provide a
programmable control plane for composing a “pipeline”
over a set of middleboxes, but do not easily extend to
consolidated architectures. Finally, CoMB demonstrates
the benefits of a consolidated middlebox, but it lacks pro-
grammability to support building modular applications
and their composition.

This work aims to provide a consolidated middlebox
development platform that addresses these issues. The

Byte stream New HTTP
(HTTP) request event

Web firewall Firewall

SSL proxy Web cache

Byte stream Byte stream
(SSL) (HTTP)

Matched
IP event

SYN event

| Flow management (TCP context) |

I TCP packets

| Packet-level events |

Figure 1: Modular composition of applications

framework supports modular design and composition of
middlebox applications as shown in Figure 1 with three
key building blocks.

Flow management: Our framework provides a uni-
fied flow management that exposes state information for
TCP and application-level contexts. Our TCP module,
based on user-level TCP [6], exposes its state informa-
tion through a well-defined set of APIs. Our API enables
observation of TCP contexts and byte streams, including
passive monitoring of TCP sessions. Based on the API
use, our TCP stack selectively enables features at runtime
for performance. Similarly, we allow modules to create
user-defined flows (e.g., HTTP sessions) and share their
state information with others.

User-defined events: Our platform allows users to de-
fine events related to TCP (or user) context changes (e.g.,
retransmission) or TCP (or user-defined) byte streams
(e.g., byte streams starting with "HTTP 1.1”) and as-
sociate callbacks to these events. User-defined events
and callbacks allow efficient extension of the basic TCP
and application functionality. For example, malicious
retransmission can be easily detected by adding a call-
back for retransmission without building a complex TCP
module from scratch [5]. Also, application protocols can
generate file transfer events that may be consumed by an
anti-virus module.

Module composition: Modules in our system can either
be composed statically or dynamically based on mod-
ule’s input/output types. For example, when a module
exports an “HTTP session” and another one imports it,
the system automatically links them together.

In sum, we propose an extensible platform for modular
middlebox development. While the implementation and
evaluation is in progress, we believe it can effectively
address key issues in middlebox development.

References

(1]
(2]

(3]

(4]

(5]

(6]

(71

Brocade Vyatta. http://www.brocade.com/index.page.

SilverPeak VX Software. http://www.silver-peak.com/
products-solutions/wan-optimization/vx-software.

J. W. Anderson, R. Braud, R. Kapoor, G. Porter, and A. Vahdat.
xOMB: Extensible Open Middleboxes with Commodity Servers.
In Proceedings of the eighth ACM/IEEE symposium on Architec-
tures for networking and communications systems (ANCS), 2012.

A. Gember, A. Akella, A. Anand, T. Benson, and R. Grandl.
Stratos: Virtual Middleboxes as First-Class Entities. Technical Re-
port Technical Report TR1771, University of Wisconsin-Madison,

2012.

Y. Go, J. Won, D. FE. Kune, E. Jeong, Y. Kim, and K. Park. Gaining
Control of Cellular Traffic Accounting by Spurious TCP Retrans-
mission. In Proceeding of the Network and Distributed System
Security Symposium (NDSS), 2014.

E. Jeong, S. Woo, M. Jamshed, H. Jeong, S. Ihm, D. Han, and
K. Park. mTCP: A Highly scalable user-level TCP stack for mul-
ticore systems. In Proceedings of the USENIX conference on Net-
worked systems design and implementation (NSDI), 2014.

V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi. Design
and Implementation of a Consolidated Middlebox Architecture. In
Proceedings of the USENIX conference on Networked systems de-
sign and implementation (NSDI), 2012.

