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ABSTRACT

Caching similar videos transparently in a network is a cost-effective
solution that potentially reduces redundant data transfers. Recent
study shows that network redundancy elimination (NRE) on the
content level could produce high bandwidth savings in ISPs. How-
ever, we find that blindly employing existing NRE techniques to
video contents could lead to suboptimal redundancy suppression
rates. This is because (a) randomness in the video encoding pro-
cess could produce completely different binaries even when they
deal with seemingly identical video clips and (b) existing NRE
chunking schemes incur high overheads since they do not utilize
the underlying video format.

In this work, we present two novel schemes that help similar
or aliased videos to be cached more effectively in the NRE sys-
tem. First, we propose a deterministic video encoding scheme that
preserves the unmodified original content even after editing or re-
encoding. This would eliminate the sources of encoding random-
ness, allowing the NRE systems to detect the redundancy across
similar videos. Second, we propose a lightweight video chunking
scheme that exploits the underlying video structure. Our “sample-
based” chunking scheme groups the logically-related frames into
a chunk, and significantly reduces the size of NRE chunk indexes
as well as chunking overheads. Our preliminary evaluation shows
that the deterministic video encoding scheme helps greatly expose
the redundancy across similar videos even after editing. Also, our
sample-based chunking reduces the chunking overhead by a factor
of 2.0 to 22.5 compared with popular NRE chunking schemes and
reduces the index size by 27 times over various video contents.
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1. INTRODUCTION

Videos have already become the dominant traffic type in the
Internet and are expected to be rapidly increasing in the near fu-
ture [21]. To prepare for the growth, many Internet service providers
(ISPs) heavily invest on efficient delivery of high-resolution videos
in their fixed and cellular networks.

Caching in the ISP is an attractive approach to handling the fast-
growing video traffic. It allows reducing redundant content trans-
fers across the ISP networks by utilizing the network resources
more efficiently. In addition, it improves the response time to the
users, allowing more videos to be delivered in time. Since on-line
video access is known to follow Zipf distribution [20, 40], even a
small cache could significantly reduce redundant data transfers.

One of the most popular caching strategies is Web caching. While
Web caching is a reasonable approach, it cannot suppress redun-
dant transfers from aliased contents or those that have partial con-
tent overlap [37]. To maximize the bandwidth savings, one can run
network redundancy elimination (NRE) on the content level. NRE
divides the content into smaller chunks, and names each chunk us-
ing its content hash (e.g., SHA1 hash) to identify any duplicates
even across different contents. A recent measurement study shows
that even a simple NRE scheme can reduce as much as 59% of
the entire cellular traffic, implying that many content transfers are
redundant in practice [37].

When it comes to video contents, however, blindly applying NRE
could produce suboptimal results. There are two reasons behind it.
First, existing chunking methods for transparent NRE are ineffi-
cient for videos. Fixed-sized chunking could miss partial content
overlap across different contents (e.g., videos that partially share
the same clips). While variable-sized chunking like Rabin’s fin-
gerprinting [30] could suppress partial content overlap, it would
not only increase the number of chunk indexes, but it also incurs
significant chunking overheads. Second, even for the seemingly
same video contents (e.g., the identical videos with the same res-
olution and frame rates), randomness in the video encoding pro-
cess could produce completely different binaries. For example, the
same movies served from different sites could have different bi-
naries, which makes it impossible for transparent NRE systems to
find the content-level redundancy.

In this paper, we propose two novel schemes that allow simi-
lar (or identical) videos to be more effectively cached in the NRE
system. First, we present a deterministic video encoding scheme
that produces identical binary for the portion of the overlapped
contents in different videos. Our proposed encoding scheme is
oblivious to editing or re-encoding, and produces the determinis-
tic results as long as the target resolutions and frame rates are the
same. For example, even if the encoding systems have a different
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Figure 1: Network redundancy elimination

number of CPU cores, our encoding scheme ensures to have iden-
tical results as long as the input is the same. Second, we propose
sample-based chunking for NRE systems that exploits the under-
lying video structure into chunking. A sample refers to a logical
picture frame or an audio fragment in a video file. By utilizing
the video format, we show that one can group semantically-related
contents into one chunk, which results in a much smaller number
of chunks for NRE with little chunking overheads compared with
existing content-based chunking methods.

We implement our cache-friendly encoding library (called c264)
by modifying x264 [36], the most popular open-source video en-
coding library, to preserve the redundancy from the original video
regardless of editing or re-encoding. c264 allows NRE systems to
easily detect and suppress the redundant content transfers for dif-
ferent versions of the same video. We find that ¢264 does not incur
extra overhead in encoding the video while producing the similar
video quality from x264. We also implement sample-based chunk-
ing and compare the performance of existing chunking schemes.
Our evaluation shows that sample-based chunking reduces the num-
ber of chunks by up to 26.9 times compared with existing chunking
methods, and detects the most of redundancy from similar videos
regardless of the video types. Sample-based chunking is also faster
than existing schemes by up to 22.5 times since it does not require
expensive function evaluation that determines the chunk boundary.
We also show that sample-based chunking can be extended to use
group-of-pictures (GOP)! as a unit of a chunk, which further re-
duces the number of chunks at a slight cost of decreased redun-
dancy detection.

The rest of the paper is organized as follows. In Section 2, we
provide brief background of NRE systems and popular video for-
mats and encoding schemes. We present some motivating exam-
ples in Section 3, and discuss our solutions in Section 4 and 5. We
evaluate our new encoding and chunking schemes in Section 6, and
show related work in Section 7. Finally, we conclude in Section 8.

2. BACKGROUND

In this section, we briefly provide the background on network re-
dundancy elimination, the ISOBMFF video format, and the typical
video encoding process.

2.1 Network Redundancy Elimination

An NRE system reduces the redundant data transfers in a bot-
tlenecked network link. It typically consists of two middleboxes
which sit at one end of the link as shown in Figure 1. A sender
middlebox close to the traffic sender receives all the data that will

A GOP is a set of successive pictures (typically between two suc-
cessive I frames) in an encoding stream.

mocIJ(v mdat

tra i Video Sample

ftyp mdia stbl | p |
| Audio Sample |

Figure 2: ISOBMFF

cross the link, and divides the content into smaller chunks. Instead
of sending the chunk data, it first sends a stream of fingerprints
(e.g., SHA-1 hashes of the chunks) to the other middlebox. If the
other end has the actual content corresponding to the fingerprints,
it reconstructs the original data and delivers it to the final destina-
tion. In case of a cache miss, it retrieves the chunk data from the
sender middlebox, caches the data with its fingerprint as an index,
and delivers it to the destination. Since these fingerprints are typi-
cally much smaller than the original chunks, if the cache hit rate is
high, the NRE systems can bring significant bandwidth savings.

The process of dividing the content into smaller chunks is called
chunking. Fixed-sized chunking divides the content into same-
sized chunks. While fixed-sized chunking is simple, it could lead
to suboptimal bandwidth savings since it may miss the redundancy
from the contents that are slightly modified (e.g., adding one byte
to a document would produce completely different chunks from the
prior version). To overcome this problem, many forms of variable-
sized chunking have been proposed. Rabin’s fingerprinting com-
putes a chunk fingerprint over the 32 bytes of sliding window for
every byte and detects the chunk boundary if the value modulo ‘p’
equals to a pre-defined number (e.g., 0)>. Assuming the evaluated
values are uniformly random, ‘p’ determines the average chunk
size. Rabin’s fingerprinting is widely used for deduplication since
it is known to detect the redundancy even if the content is edited
or updated [26, 29, 31, 33]. However, Rabin’s fingerprinting in-
curs heavy computation overhead in the chunking process since
it has to evaluate a function for each byte in the content. SAM-
PLEBYTE [17] overcomes this overhead by determining the chunk
boundary with simple table lookups for each byte. That is, it first
stores candidate byte values for a chunk boundary in a table, and
scans each byte in the content to see if the byte is in the table. If
a certain byte is in the table, then it simply generates a new chunk
with that byte as the boundary of a chunk. SAMPLEBYTE drasti-
cally reduces the chunking overhead while it is known to produce
a similar level of redundancy for network traffic [17].

However, one problem (especially relating to videos) is that both
approaches do not consider the content format or types. While
content-independent chunking has the benefit of generality, it would
lead to suboptimal results for multimedia objects since it often
makes completely-unrelated bytes into a chunk. Given that the
video traffic is growing fast, video-aware chunking could produce
more semantically-related chunks, which would reduce the number
of chunks while improving the cache hit ratio in NRE systems. We
focus on this aspect in this paper.

2.2 1ISO Base Media File Format

We primarily focus on the ISO base media file format (ISOBMFF
or MPEG-12 [16]) since it is one of the most widely-used video
formats in progressive downloading or streaming [23]. As Figure
2 shows, an ISOBMFF file consists of boxes. Among many boxes,
we look into moov and mdat boxes. The moov box stores the meta-
data of the media while the mdat box contains the actual video and
audio data. A sample in a media format refers to an access unit

2This method is called MODP.



or an individual video frame in ISOBMFF. An mdat box can hold
many video and audio samples. The moov box has the information
of each media track for seeking, indexing, and decoding. More
specifically, the stbl box in a moov box contains the offsets and
sizes of the samples. We can extract the samples and boxes using
this information in the moov box, which allows us to use its logical
structure into chunking.

2.3 Video Encoding Process

We briefly review the video encoding process with H.264. H.264
is one of the most popular video encoding standards by Joint Video
Team (or ITU’s Video Coding Expert Group and MPEG) [6]. It is
also known as MPEG-4 part 10 or Advanced Video Codec (AVC).
x264 is a free software encoding library that implements the H.264
standard [36], which is widely used by video encoders or popular
Web sites such as YouTube [14], Facebook [2], Vimeo [11], and
Hulu [4].

H.264 video frames can be one of the three types: I, P and B
frames. An I frame (or intra frame) serves as a reference frame that
does not refer to other frames when it is encoded. In contrast, P and
B frames (or inter frames) are typically encoded as the difference
from other frames. When a video is edited or re-encoded, I frames
in the output could be different from those in the original video.
If I frames are chosen differently from the original version, all P
and B frames that follow have to be encoded differently, which re-
sults in distinct binaries in the two videos even if they have content
overlap. So, in order to preserve the redundancy in video editing,
keeping and reusing the same I frames from the original content is
important.

x264 implements the H.264 basic encoding flow by enabling
parallel processing on multiple CPU cores. For parallel encod-
ing, x264 employs three types of threads; one main thread, one
or more lookahead threads and encoding threads. The main thread
is in charge of the overall encoding procedure. When it receives de-
coded frames from a decoder, it places them into a lookahead input
queue so that the lookahead threads can analyze them. Each looka-
head thread decides the frame type based on its own inter-frame
cost estimation, and reorders the frames to the encoding sequence
order based on the frame reference order. When frame analysis
is done, encoding threads encode those frames according to the
frame type. The number of lookahead and encoding threads can
be adjusted by the number of available CPU cores in the encoding
system.

3. MOTIVATION

There are many routes to download popular videos from the
Internet. People download movies, music videos, or TV shows
from online video-on-demand (VoD) sites such as Netflix [8], Ama-
zon [1], iTunes [5], and YouTube, or sometimes obtain them from
file sharing sites [10]. The diversity of on-line video distribution
sources naturally creates redundant transfers of the popular videos.
According to recent studies, 27% of the videos returned from the
top 25 popular queries at YouTube, Google Video [3], and Yahoo!
Video [13] have either the same or almost identical content [38,39].
This implies that there is a high chance of reducing the redundant
traffic by caching these identical contents.

To cache the same content transparently, ISPs could deploy NRE
systems in their networks. However, even the videos with the same
content often have different binaries, which could reduce the effec-
tiveness of caching. The diversity on the binary level stems from
different encoding environments, preset, and video containers (e.g,
mp4, mov, avi, etc.) or could be due to re-encoding of the same

1vs. 8
Encoders 1 CPU Core | 8 CPU Cores CPU Cores
VLC [35] 99.99% 19.94% 19.65%
Daumpot
Encoder [22] 99.99% 2.45% 1.35%
HandBrake [34] 99.99% 99.99% 9.14%
Windows
Movie Maker [28] 98.51% 98.91% 4.21%

Table 1: Redundancy between the two encoding outputs from
the same video source. Parallel encoding often produces differ-
ent binaries despite with the identical input.

content uploaded by the users. We often find no redundancy even
between a full video and its video clips.

To know more about the problem, we run a simple test. We
download two music video files with the identical content (e.g.,
same length, resolution, frame rate, codec (H.264) in the same con-
tainer format) from YouTube and Vimeo. We compare each video
sample in these files, and confirm that they have completely dif-
ferent binaries. That is, the exactly same videos by “human eyes”
could be encoded into a totally different binary.

One way to get around this problem is to cache the video based
on its information bound reference (IBR) [32]. IBR extracts in-
trinsic features from each video, and compare them to identify the
same content. IBR could identify the same videos despite with dif-
ferent binaries. However, one problem with IBR is that it could
produce false positives, which recognizes different contents as the
same video. What is worse is that this weakness can be exploited
by an attacker that presents completely different videos as the same
content.

The goal of our work is to identify possible causes for binary-
level disparity for the same content, and to propose a new encoding
scheme that encodes the same content into the same binary. Also,
we suggest a new video chunking scheme that efficiently identifies
the unit of caching by utilizing the underlying video format.
Re-encoding When content distributors obtain a video from a
content provider, they often re-encode it to fit into their player op-
tions or to support different resolutions. However, this re-encoding
process could produce the difference between original and new ver-
sions on the binary level.

One might think that using the same encoder with the same pre-
set would solve this problem. However, we find that even with the
same encoder, re-encoding sometimes produces different outputs
on the binary level. Table 1 shows the redundancy across the two
encoded outputs with the same video source as an input. That is,
we re-encode a sample video (45-minutes long, HD resolution with
1280x720 pixels) twice, each time with the same encoder and the
same preset, and calculate the redundancy between the two out-
puts by Rabin’s fingerprinting with a 128-byte average chunk size.
When we use a single CPU core for encoding, the two outputs are
almost identical except for some metadata difference. However,
when we encode with multiple CPU cores 3, the resulting binary is
sometimes drastically different for each encoding as shown in VLC
and Daumpot Encoder. In addition, we see the difference in the
output binaries encoded with a single and multiple CPU cores, re-
spectively. We suspect that the binary-level difference comes from

3We enabled Hyperthreading on a quad-core CPU machine.



. Total # of | Generated b
Genre Length (min) I frames | scene-cut (%};
Action film * 123 2441 97.91
Animation > 10 141 88.65
TV show © 47 552 85.51
Sports (football)” 98 781 51.22
College lecture 8 48 180 21.67
Video game ° 64 488 10.86
Home video 1° 1.8 13 7.69
Adult 51 372 0.81

Table 2: % of I frames chosen by the x264 scene-cut function

randomness introduced by parallel encoding. For effective chunk-
based caching, one needs to fix this problem.

Editing Partial video editing sometimes produces a completely
different binary from the input even if the encoding parameters are
same as in the source. For example, when you remove some frames
in the front of a video while keeping the remaining frames intact,
the starting I frame in the new version could be chosen differently
from that in the original video. The difference in the starting frame
affects the encoding process of the following frames, resulting in
different B/P frames since the reference point is now different from
that of the original source.

One workaround is to use the scene-cut function in x264. This
function evaluates various metrics such as difference between nearby
frames and a frame encoding/decoding cost to determine if a scene
is being changed. Using this information, the encoder decides where
to put an I frame to reflect a scene change. If we use the same
scene-cut function to determine the location of the I frames both in
the original and edited versions, we should be able to preserve the
redundancy between the two files.

However, what we find is that the x264 scene-cut function works
well only if a video includes frequent scene changes. Videos with
little motion determine the locations of I frames at a fixed inter-
val (e.g., by every 250 frames) rather than by the scene-cut func-
tion. When we edit these static videos, x264-based encoders would
choose different locations as I frames even if the edited result is
supposed to have significant content overlap from the original ver-
sion. Table 2 shows this point as it compares the fraction of I
frames selected by the scene-cut function for various videos of dif-
ferent genres. We observe the trend that videos with smaller scene
changes are less affected by the scene-cut function in choosing the
I frames. All this result shows is that we need to find a more de-
pendable way to consistently select the I frames at video editing.
Chunking Existing variable-sized chunking methods such as Ra-
bin’s fingerprinting may produce suboptimal redundancy suppres-
sion since they do not utilize the underlying media format. Even
when two videos are composed of a set of identical samples, these
samples could be laid out in a different order. For example, if video
samples are interleaved by audio samples in a different order from

“Iron Man 3, the highest grossing movie of 2013 by IMDB [9]
5Big Buck Bunny. http://www.bigbuckbunny.org/

Breaking Bad, the most popular TV series in 2013 by IMDB [9]
7Real Madrid vs. Chelsea football match (Aug. 8th, 2013)

8A lecture from MIT Open Courseware. http://youtu.be/
zm2VPOkH11M

9League of Legend all-star game in 2013, which drew 18 million
unique viewers [24] http://youtu.be/crexqQ79g00
107 popular home video at YouTube (with 62 million views) http:
//youtu.be/RP4abiHdQpc
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Figure 3: Video editing examples
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Figure 4: Definition of Edit Redundancy

those in the source, the chunk-level redundancy across the two ver-
sions would be small. Moreover, for maximum redundancy de-
tection, a small chunk size is preferred in the existing chunking
methods, which significantly increases the index management cost.

To know more about this, we compare the exposed redundancy
by Rabin’s fingerprinting in three cases of video editing: deleting
the front half, deleting the rear half, and extracting the middle part
of an original video (as shown in Figure 3). We edit the same video
(45-minutes long) as in the previous section, and use MP4Box [7],
which allows us to re-arrange or remove the samples in the original
MP4 file. We define “edit redundancy” (ER) of original and edited
versions as the ratio of the number of bytes in the shared chunks
out of the total size of the edited file, as shown in Figure 4. For
example, 100% ER means that the edited version is a complete
subset of the original video and the chunking method exposes the
maximum redundancy between the two.

Table 3 shows the ERs exposed by Rabin’s fingerprinting over
various average chunk sizes in three editing cases. Theoretically,
we should see the ER as 100% in all cases since we simply cut
some pieces from the original version. Rabin’s fingerprinting ex-
poses a good ER with a small average chunk size but the ER de-
creases rapidly as the average chunk size grows. We find that this
is primarily because the audio samples are interleaved in the video
samples in a different order from those in the original video. If a
typical audio sample size is smaller than the average chunk size,
more chunks would include a portion of both video and audio sam-
ples, which would reduce the ER in the chunk level.

To keep a high ER, one needs to use a small chunk size. How-
ever, a small chunk size would significantly increase the number of
chunks, which incurs a high management cost of chunk indexes in



Average chunk | Original & Original & Original &
(bytes) Remove rear | Remove front | Extract middle
128 93.18% 93.17% 93.18%
256 88.33% 88.32% 88.33%
512 80.64% 80.77% 80.67%
1024 68.06% 67.96% 68.00%
2048 48.04% 47.92% 48.08%
4096 24.89% 25.22% 25.15%

Table 3: Edit redundancy exposed by Rabin’s fingerprinting

| Average chunk size (bytes) | # of chunks

128 9,584,983
256 4,785,126
512 2,391,610
1024 1,196,314
2048 598,018
4096 298,424

Table 4: # of generated chunks by Rabin’s fingerprinting

an NRE system. For example, an average chunk size of 128 bytes
would produce 32 times more chunks than that of 4KB chunks.
Besides the memory overhead, a large index size would increase
a hash calculation cost as well. To give an example of the chunk-
ing overheads, we count the number of chunks detected by Rabin’s
fingerprinting for the 23 most popular HD videos in the YouTube
chart!! whose aggregate size is 1.3 GB. Table 4 shows the number
of chunks over different average chunk sizes. The total number of
samples in the dataset is 366,587 (video: 132,214, audio: 234,373),
which is slightly larger than that of 4 KB chunks. This implies that
any chunk size larger than 4 KB would produce a larger number of
indexes than is required for the optimal redundancy.

In summary, we find a popular NRE chunking scheme like Ra-
bin’s fingerprinting is suboptimal for content-based video caching.
First, a large chunk size exposes a smaller ER due to the non-
deterministic interleaving of video and audio samples. Second, it
could greatly increase the number of chunks compared with that of
samples when the chunk size is small. Finally, Rabin’s fingerprint-
ing itself incurs high computation overheads since it has to evaluate
a function for every byte in the video content. content types,

4. REDUNDANCY-PRESERVING ENCODER

In this section, we propose two schemes that preserve the re-
dundancy between the original and edited video binaries. One is
to remove the dependency on the encoding environment, and the
other is to keep the positions of the I frames in the source video the
same in the edited video. We find these two schemes work well in
practice when we edit or re-encode a video.

We implement these two schemes in a cache-friendly library
called c264 by slightly modifying the x264 video encoding library
(ver.:2245). The implementation is simple since it requires only
200 lines of code out of 42K lines of the original x264 code.

4.1 Removing Environmental Dependency

We identify two sources of randomness in parallel video encod-
ing with x264. First, we find that the non-deterministic encoding
option in X264 often produces different binaries from the same in-
put even when we use the same number of CPU cores for each en-
coding. Second, we identify a few x264 parameters that affect the
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Figure 5: Example of thread synchronization. The gray area
shows the portion that is already encoded, and the red-slashed
boxes show the current encoding position. In a determinis-
tic encoding mode, encoding thread 2 has to wait for the red-
dashed box to be finished by encoding thread 1 (e.g., need to
be synchronized) to correctly predict the inter-frame motion
whereas in a non-deterministic mode, the search window for
the motion prediction is shrunk not to block thread 2.

encoding results depending on the number of CPU cores employed
for encoding.

Removing randomness in the same environment For deter-
ministic encoding output, we suggest that one should disable the
non-deterministic encoding option in x264. This encoding option
is used to improve the encoding quality and to maximize the par-
allelism in encoding in a multi-threaded mode. However, as the
name implies, this option serves as the major source that produces
inconsistent results despite with the same input since it dynamically
changes several parameters while encoding.

There are two parameters that affect the encoding results when
we use the non-deterministic encoding option. First, with this op-
tion on, the number of frames referenced by the lookahead threads
is made to change over time, which affects the threads to decide the
frame type. Due to this, a certain frame that is chosen be an I frame
at one encoding could be made a P or B frame at another encoding
since the number of referenced frames for determining the frame
type is dynamic. Second, this option makes the inter-frame motion
prediction range '? variable over time. Variable motion prediction
range would result in a different encoding binary at each encoding.

Disabling the option would make these two parameters fixed
over time, which makes the consistent output from the same in-
put as long as the encoding environment (e.g., the number of CPU
cores) does not change. One might worry that disabling this op-
tion would affect the encoding speed or quality, but we find that
it does not significantly slow down the performance as well as the
encoding quality as shown in the evaluation section.

Removing dependency on the CPU core count The non-deterministic

encoding option is not the only feature that injects randomness in
parallel encoding. We find that the inter-frame motion prediction
range and the number of lookahead threads depend on the number
of CPU cores employed by the encoder. That is, these two param-
eters take on different values on a machine with a different number
of CPU cores, which leads to difference in encoded output.

Here is how these two values affect the encoding output. x264
employs multiple encoding threads whose number is proportional
to the number of CPU cores. As shown in Figure 5, multiple en-
coding threads would often require thread synchronization since
some thread has to wait for inter-frame motion prediction range in
the previous frame to be finished encoding to accurately predict the

12 A search window box for motion prediction as shown in Figure 5



motion in its own frame. In the deterministic encoding mode, this
range is fixed during encoding, but its value depends on the number
of encoding threads. That is, it is set to a lower value as the number
of encoding threads increases to reduce the chance of thread syn-
chronization overhead. Due to this, encoding the same video with a
different number of CPU cores would produce a distinct result even
in the deterministic encoding mode.

A related problem happens with the number of lookahead threads.

On a multicore system, x264 could have multiple lookahead threads
and they could analyze each frame in parallel. For example, one
lookahead thread could look at the upper half of one picture (this
portion is called slice) while another thread looks at the bottom half
to figure out how previous frames would be used to encode each
portion. So, two outputs would be different if they are encoded
with a different number of lookahead threads.

To get around these problems, we fix the inter-frame motion pre-
diction range (e.g., as the number used for eight cores) and set
the number of lookahead threads to one regardless of the number
of CPU cores. These two changes along with disabling the non-
deterministic encoding option completely solves the problem of in-
consistent output. One might suspect that these changes would de-
grade the encoding performance, but we find that the performance
degradation is minimal as shown in the evaluation section. How-
ever, we do not claim our suggestion is free of any side effects, and
we leave exploring and addressing them as our future work.

4.2 Keeping the IDR frame Position

Since I frames are referenced by P or B frames, having a dif-
ferent set of I frames in two logically identical streams of frames
would make the content different on the binary level. That is, if we
choose the location of I frames differently when editing a video (by
cutting out some frames or concatenating with other frames), the
two versions would have a completely different binary even if they
are supposed to have significant overlap in the content.

To solve this problem, we keep the I frames in the original video
to be preserved in the new version as long as the portion is not
modified. To fulfill this requirement, we maintain the Instantaneous
Decoder Refresh (IDR!?) frame positions of the source video at the
encoding process. That is, we obtain the IDR frame position from
an stss box in each moov box in the source video since accessing to
the stss box is the simplest way to get the information. In case the
stss box does not exist, we obtain the information by parsing the
mdat box.

S. VIDEO-AWARE CHUNKING

In this section, we present two chunking methods that exploit
the underlying video structure into chunks. The goal of these ap-
proaches is to maximize the exposed redundancy across similar
video contents while minimizing the chunking overhead. In ad-
dition, it should reduce the number of indexes to ease the index
management cost.

5.1 Sample-based Chunking

Sample-based chunking makes each video or audio sample as
a separate chunk. The key observation here is that the minimum
granularity of a video file for the purpose of NRE is a sample.
Since a video consists of a stream of samples, if two videos are
said to have content overlap, they should have identical samples
that represent the overlapped region. In this respect, a sample in a

13 A special I frame defined by AVC [15] such that frames that come
after an IDR frame cannot reference any frames before the IDR
frame.

s

Algorithm 1 Sample-based Chunking Algorithm

1: procedure CHUNKING(VIDEO)

2: //Parse metadata

3: find moov box

4: while there are remaining stbl boxes do:
5: find the stbl box
6‘
7
8

parse the location and the size of each sample
end while

9: //Divide samples into chunks
10: of fset <0
11: while of fset <length of VIDEO do:

12: if o f fset is within an mdat box then

13: make a chunk from the sample

14: run SHA-1 and assign the chunk id

15: of fset < of fset + sample_size

16: else

17: calculate Rabin’s fingerprint

18: determine whether to make a chunk or not
19: of fset < of fset +1

20: end if

21: end while
22: end procedure

video file serves as the minimum unit that can be logically shared
across multiple video files.

Employing a sample as the chunk unit presents a number of ad-
vantages. First, it exposes full redundancy that exist in two videos
with any content overlap. This is because the content overlap among
videos manifests as a form of a sample. Second, the chunking over-
head of sample-based chunking is almost similar to that of fixed-
sized chunking since finding chunk boundaries is as simple as off-
set calculation. In contrast, Rabin’s fingerprinting has to evaluate
a function for each byte to determine chunk boundaries, which in-
curs a much heavier overhead. Finally, it produces a much smaller
number of indexes than that of existing variable-sized chunking
schemes if we want a similar level of exposed redundancy. This
is because existing chunking methods may miss the sample bound-
aries unless the average chunk size is set to a small value.

Algorithm 1 shows the pseudo code of sample-based chunking
for NRE. First, it searches for the moov box by skipping other box
types without parsing. It then extracts the offset and size informa-
tion of every sample used in the file, which sits inside the stbl box
in the moov box. Then, it scans the video and makes chunks out
of the content. For an mdat box, it extracts each sample inside the
box by its offset and size information. For other boxes, it applies
Rabin’s fingerprinting for getting the chunk boundaries. Then, it
runs the SHA-1 hash function over each chunk data to obtain the
ID for the chunk.

5.2 GOP-based Chunking

When we use sample-based chunking in practice, we notice one
problem with it. While a large fraction of the video data is divided
into a small number of chunks, it also produces a large number
of small chunks. We find that this is primarily due to small audio
samples whose number is typically much larger than that of video
samples. These small chunks can degrade the overall the NRE sys-
tem performance since it increases the number of I/Os as well as
the content reconstruction cost in an NRE middlebox system.

One way to solve this problem is to convert only the video sam-
ples to chunks. That is, one can apply deduplication only on the
video samples while sending other portion without NRE. This makes
sense since audio does not take up much of the space in a video file,
and the redundancy suppression ratio would not decrease too much.
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Figure 6: Overview of NRE system using GOP as a chunk

To verity this point, we analyze the popular YouTube videos used
in section 3 again, and find that the audio data takes up only about
5 to 20 percent of the total size. In case of HD-quality videos,
the audio portion is mostly less than 10 percent of the file size.
Given that the demand for HD or higher-quality videos is rapidly
increasing [21], skipping the audio data for NRE will be a good
trade-off between the level of redundancy suppression and the NRE
system performance. If we skip the audio samples, we can merge
multiple video samples that are related into one chunk, significantly
reducing the chunk overhead as well as the index size.

We define GOP-based chunking as the chunking scheme that
makes all video samples between two consecutive IDR frames into
one chunk. It skips the audio part for NRE and sends the data as is.
Figure 6 shows how GOP-based chunking works with NRE middle-
boxes. First, the sender middlebox applies sample-based chunking
to identify the chunk boundary, but expands each chunk by merg-
ing all samples between two IDR frames. In case of audio samples,
it sends them with the offset information for content reconstruction
later. Finally, the receiver middlebox reconstructs the original data
and sends it to the client.

6. EVALUATION

In this section, we evaluate our encoding and chunking schemes.
The goal of our evaluation is to show (a) c264 effectively preserves
the redundancy across editing or re-encoding without performance
degradation from x264 and (b) sample-based chunking reduces the
chunking and indexing overheads while exposing full redundancy
that exists between similar videos.

6.1 Effectiveness of Cache-Friendly Encoding

We show that our encoding scheme effectively preserves the re-
dundancy from the original content even after editing/re-encoding
and that the encoding overhead is comparable to that of existing
schemes. We primarily compare our encoding library, c264, against
the unmodified x264 library.

Exposed redundancy To show the benefit of 264, we encode all
videos from various genres in Table 2 except for short videos (an-
imations and home videos that are 1-minute long). We cut 5 min-
utes at a random position from each video and encode it with three
encoders: Windows Movie Maker, x264-based and c264-based en-
coders. We re-encode the original videos as well, and compare
the ER between the S5-minute clip and the re-encoded video. We
use a machine with a quad core Intel CPU (i7 2600) with hyper-
threading on and 16GB of physical memory. To prevent the effect
from non-deterministic parallel encoding, we run Windows Movie
Maker with a single CPU core while running the other two encoders
by disabling the non-deterministic encoding option. We run the
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Figure 8: Encoding performance of ¢264 and original x264

tests for five times, and calculate the average ER between the orig-
inal video and the clips.

Figure 7 compares the ER between the 5-minute clip and the
re-encoded original video for each type. We calculate the redun-
dancy using Rabin’s fingerprinting with an average chunk size of
128 bytes. '* We do not show the results for Windows Movie
Maker since they all show less than 1% ER. This is mainly be-
cause Windows Movie Maker places IDR frames at a fixed interval,
which makes the 5-minute clips start with a completely different
IDR frame. From the figure, we find that c264 preserves the redun-
dancy close to 100% from the original videos while x264 shows
comparable results only for two genres. This shows that c264 is
effective in preserving the redundancy regardless of the video type
while the existing library could face a problem depending on the
video content.

Performance of c264 We go on to measure the performance over-
head of c264-based encoding. We choose a raw video from [12],
which has 500 frames of full HD resolution (1920x1080) whose
size is 1.6 GB. Figure 8 compares the encoding performance of
x264 and c264 over various numbers of CPU cores. We find the
tendency that the performance increases up to four CPU cores, and
stabilizes more or less beyond that. We suspect this is because the
encoding process is memory intensive, and hyperthreading does not
improve the performance further. Overall, we find that the perfor-
mance gap between the two schemes is within 3%, which implies
that the extra overhead incurred by ¢264 is small. We also confirm
that the encoding quality is almost the same. Both encoders pro-
duce the same peak signal-to-noise ratio (PSNR) as 33.298 for all
16 outputs, and the difference in the output file size is within 0.02%

6.2 Effectiveness of Sample-based Chunking

We evaluate the effectiveness of sample-based chunking in terms

of execution time and ERs exposed by chunking schemes. We use
a server-class machine with a hexacore Intel Xeon CPU (E5-2630)
and 12 GB of physical memory.
Chunking execution time To evaluate the chunking overhead,
we compare the execution time of sample-based chunking, Rabin’s
fingerprinting with MODP and SAMPLEBYTE [17]. We run these
chunking algorithms on one of the most popular HD videos from
YouTube !> whose size is 1.1 GB. For fair comparison, we exclude
the disk access overhead by pre-loading the content to memory be-
fore chunking.

14We avoid the interference by interleaved audio samples by encod-
ing and checking only the video part.

5The video game shown in Table 2
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Figure 9: Chunking execution time of a popular HD video (1.1 GB)

Figure 9(a) shows the results without SHA-1 calculation. Sample-
based chunking takes 12.4 milliseconds, 510 and 1,585 times faster
than Rabin’s fingerprinting at 32B and 4 KB average chunk size,
respectively. SAMPLEBYTE shows much better results than Ra-
bin’s fingerprinting but it incurs more overhead than sample-based
chunking since it scans every byte for chunking. In contrast, sample-
based chunking quickly finds the chunk boundaries by simple meta-
data lookup, which produces 117x to 236x speedups over SAM-
PLEBYTE.

Figure 9(b) compares the chunking times with SHA1 calcula-
tion. Sample-based chunking shows 4.9 to 22.5 (or 2.0 to 12.5)
times performance improvement over Rabin’s fingerprinting (and
SAMPLEBYTE). The increased overhead by Rabin’s fingerprint-
ing and SAMPLEBYTE is primarily because the number of pro-
duced chunks is much larger than that of sample-based chunking,
which exercises the fixed overhead of SHA-1 calculation per chunk.
Comparison of exposed redundancy To evaluate the exposed re-
dundancy by sample-based chunking, we edit the video game video
used in Section 3 by removing the front 30 minutes of the video
with MP4Box. We then measure the ER between the two versions,
and the total number of chunks generated by Rabin’s fingerprinting
and sample-based chunking.

Figure 10 shows that sample-based chunking finds almost all re-
dundancy (99.9%) that exists between the two versions. The rea-
son why the ER does not reach 100% is because of the metadata
difference in the moov box. Rabin’s fingerprinting also detects
the most of the redundancy at a small average chunk size, but the
exposed redundancy decreases as the chunk size increases. With
the 128 byte average chunk size, Rabin’s fingerprinting shows the
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Figure 10: Edit redundancy comparison and total number of
generated chunks according to chunking method

ER close to that of sample-based chunking, but it produces 26.9x
more chunks, which incurs higher index management and content
reconstruction costs. In addition, the small chunk size increases the
chunking time by 9.6x than that of sample-based chunking. A 4 KB
chunk size greatly reduces the number of chunks to even a smaller
value (346,813) than that sample-based chunking (414,915), but it
also reduces the ER by 17% as well as 4.9x larger chunking time



| | Sample-based | GOP-based |

Number of chunks 367,938
[Video chunks] [132,214] 4,446

[Audio chunks] [234,373]
Average chunk size (KB) 10.1 301.4

Table 5: Number of chunks and average chunk size of the 23
most popular YouTube videos

overhead. In summary, sample-based chunking exposes the most
of the redundancy at a much smaller chunking overhead compared
with Rabin’s fingerprinting.

Effectiveness of GOP-based chunking We evaluate GOP-based
chunking with the 23 most popular videos at YouTube used sec-
tion 3. Table 5 compares the total number of chunks and the av-
erage chunk size by sample-based and GOP-based chunking. As
shown in the Table, GOP-based chunking reduces the number of
chunks by a factor of 82 than that of sample-based chunking, and
the average chunk size is 29.8 times as large as that of sample-
based chunking. One minor drawback of the current version of
GOP-based chunking is that it skips the audio data for chunking,
which takes up 9.3% of the total size.

We believe GOP-based chunking presents a great potential to
reduce the chunk index management overhead as well as the chunk
data I/O overhead in real video-aware NRE systems. However, we
have not fully explored the trade-offs of GOP-based chunking yet,
and leave other systems issues (e.g., real-time delay for GOP-based
chunking, chunking of concatenated audio samples, overall system
performance, etc.) to our future work.

7. RELATED WORKS

There have been a large body of studies that eliminate the re-
dundant network traffic using content-based caching [17,19,25,29,
33,37,41]. One nice aspect of these systems is that they can be
applied to any traffic as long as it has redundancy, which simpli-
fies the system design and implementation. In our work, we focus
on video-aware network traffic deduplication, a specialized form of
NRE. For effective NRE of redundant video traffic, we suggest that
the encoding algorithm should be free from the interference by par-
allelism, and that the chunking algorithm should reflect the video
format into detecting the chunk boundaries. While our approach
increases the engineering complexity, we believe it is worth the ef-
forts given the performance benefits shown in this paper as well as
the trend of rapidly increasing video traffic.

A recent work deals with caching the “perceptually” same videos
of different encoding [32]. That is, it attempts to identify the videos
whose content is indistinguishable by human eyes but that have dis-
tinct binaries due to encoding difference. They have built iProxy, a
video caching proxy that saves the caching storage space by keep-
ing only one copy of these perceptually same videos referenced by
multiple URLs. To recognize the perceptually same videos, they
use information reference bound (IBR), which quantifies a set of
features in a multimedia object [18]. They coined VideoIBR which
is a set of IBR values for a stream of chunks that constitute a whole
video. For example, if a cache-missed video (fetched from the ori-
gin server) has an almost identical VideoIBR as one that is already
stored, that video is simply linked to a previous copy. This scheme
should be very useful in compressing the video cache storage given
that videos are typically much larger than Web objects.

In comparison, we focus on NRE of similar video contents whose
redundancy should be exposed as a portion of identical binaries.
This approach guarantees safe operation by delivering the exact

same copy to the client while VideoIBR could produce a possi-
bility of identifying two different videos as the same one. Also, our
scheme addresses partial content overlap between edited versions
of the same video.

The are a few works [25,27] that attempt to adjust the chunk-
ing algorithm to the content type for improved redundancy expo-
sure. [27] employs specialized chunking for flash videos (FLV) and
MP3 files and improves the data compression rate by up to 27%
compared with that of Rabin’s fingerprinting. [25] improves the
NRE performance by adjusting the chunk size to the characteris-
tics of the content. In comparison, our work focuses on encoding
and chunking algorithms for ISOBMFF-aware NRE systems.

8. CONCLUSION

Eliminating redundant video traffic in a network is a cost-effective
approach to handling fast-growing popularity of the video content.
In this work, we have proposed a cache-friendly encoding scheme
and two video-aware chunking algorithms. Our cache-friendly en-
coding scheme effectively exposes the underlying redundancy at
the time of editing or re-encoding by removing the interference
from parallel encoding. We find that our new encoding library,
c264, preserves almost full redundancy between two versions at a
low cost, compared with that of the x264 library. For video-aware
chunking, we have proposed sample-based and GOP-based chunk-
ing. Sample-based chunking improves the chunking overhead by
a factor of 2.0 to 22.5 compared with that of the best-performing
chunking approach known so far while it exposes the redundancy
almost perfectly. GOP-based chunking significantly reduces the
chunk indexes by merging related samples into a chunk, which
should be beneficial to reduce the NRE system overhead. We be-
lieve video-aware NRE is a promising area that needs to be further
developed, and we hope our work will serve as the stepping stone
towards the road.
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