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1 Introduction

Transport Layer Security (TLS) is increasingly popular in
the modern Internet [7] as it ensures secure private network
communication. While this is beneficial to endpoints, it
poses a serious problem in traffic monitoring. Today’s TLS
middlebox intentionally operates as a man in the middle
(MITM) – it impersonates as any site that a client intends to
visit and inspects the stream while it relays the encrypted
traffic between the two endpoints. The impersonation is
typically realized by installing a custom root certificate at a
client [2], which nullifies the key properties of TLS beyond
giving up confidentiality, i.e., no end-to-end authentication
nor content integrity is guaranteed.
There have been a number of research works [3–5] that

attempt to address the problem. These proposals enable ex-
plicit middlebox authentication while they extend the key
exchange process so that endpoints (and/ormiddleboxes) can
readily detect illegal modification by non-privileged middle-
boxes. Unfortunately, none of these systems consider perfor-
mance as their primary goal, and they often incur significant
overheads. This is problematic as the CPU advancement has
stagnated while the network bandwidth keeps increasing.

We tackle the performance issue from a new perspective.
Our key observation is that traffic monitoring middleboxes
in the client side are often predominantly read-only [3]. For
read-only middleboxes, we argue that using a generalized
architecture like mbTLS [4] or maTLS [5] is highly inefficient
due to the complexity in key sharing and extra computation.
Also, they operate by terminating a connection from a client
and initiating a separate connection to the server (which we
call "split-connection"). However, split-connection incurs a
huge overhead as it not only relays the traffic between two
TCP connections but it also translates the encrypted content
from one endpoint to the other.
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Figure 1: Operations of an monTLS middlebox

2 Approach
Basic scheme. We present monTLS, a highly-scalable TLS
traffic monitoring architecture that preserves the end-to-
end TLS properties except confidentiality. The key idea of
monTLS is very simple – monTLS keeps the original end-
to-end TLS connection intact while it allows TLS endpoints
to securely share the session keys with TLS middleboxes
for traffic monitoring. Figure 1 shows the overview of the
operations. In the setup phase, an monTLS middlebox es-
tablishes an out-of-band persistent TLS session with each
client. This TLS session is used for secure key delivery and
explicit middlebox authentication. Then, the middlebox op-
erates by forwarding packets between the two endpoints
rather than relaying the content on two TLS connections.
After a client initiates a TLS handshake with a server ( 1⃝), it
shares the session keys with the middlebox over the secure
channel ( 2⃝). Then, the middlebox reassembles each TLS
record from incoming TCP packets, decrypts the record if it
collects a complete one, and runs a monitoring function (by
deep packet inspection) on the plaintext. The middlebox can
block or terminate the connection if the content turns out
to be malicious. Underneath the table, the middlebox keeps
relaying the original packets to the other endpoint ( 4⃝). In
case a new incoming packet completes a TLS record, the
middlebox forwards the packet only after the DPI function
confirms that the content is innocent. While a partial TLS
record that contains malicious content can be delivered to
the other endpoint, this would not be delivered to the up-
per layer as the TLS standard dictates that a received TLS
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Figure 2: Private tag generation for end-to-end content integrity

record must be verified in full before being delivered to the
upper layer [1]. Overall, our base design focuses on high
performance – the problem is reduced to monitoring a single
TCP connection without re-encryption. The middlebox does
not run congestion/flow control nor need to ensure reliable
data delivery between the two endpoints. All packets are
forwarded without re-encryption nor being queued up for a
complete TLS record.
Support for end-to-end content integrity. While the ba-
sis scheme ensures end-to-end authentication, it does not
guarantee end-to-end content integrity (a.k.a. data authenti-
cation). As TLS 1.3 mandates authenticated encryption with
additional data (AEAD), sharing the key with a middlebox
implies that the middlebox can modify the data but still gen-
erate a correct tag even if it is read-only. To address this
problem, we propose adding a second tag to the TLS record
where the key for this tag is kept secret only to endpoints.
While this requires updating the handshake process, it can
be implemented as an extension. Using the second tag, the
receiver can detect illegal content modification in the middle
while the middlebox can verify content integrity with the
original tag (see Figure 2).
Implementation. We implement monTLS middlebox as
an application of mOS [6], which provides a set of events
and APIs for monitoring the flow-reassembled TCP content.
To fully utilize CPU in the middlebox, we leverage a SoC
SmartNIC (Bluefield-2) as a scalable session key receiver.
The key receiver on the SmartNIC kernel is implemented as
an epoll-based OpenSSL server.

3 Preliminary Performance

We compare the performance of an monTLS middlebox
against existing solutions. For the baseline, we use nginx
TLS proxy (v1.22.0) to represent an existing MITM middle-
box (splitTLS), and we also compare against mcTLS1 as a
secure split-TLS middlebox. For the middlebox, we use a
machine equipped with 16-core Xeon Gold 6326 @ 2.90GHz
and Bluefield-2 dual-port 100GbE NIC, and we make sure
that neither clients nor servers become the bottleneck. The
TLS middleboxes decrypt the content but do not run any DPI
applications like pattern matching. Clients request objects
of a varying size with 4,000 concurrent, persistent TLS con-
nections with either ECDHE_RSA_AES_256_GCM_SHA384

1Unfortunately, mbTLS [4] is closed source and maTLS [5] does not
support large file transfer.

13 

143 144 

6 

65 
77 

5 

38 
57 

4
22 29 

3 
11 13 

0

50

100

150

1K 4K 16K 64K 256K 1M 4M

Th
ro

ug
hp

ut
 (G

bp
s)

Requested object size (byte)

mmTLS (GCM-SHA384)
mmTLS (CBC-SHA256)
splitTLS (GCM-SHA384)
splitTLS (CBC-SHA256)
mcTLS (CBC-SHA256)

mo
n

mon
mon

Figure 3: Monitoring throughputs over varying content sizes

(v1.3) or DHE_RSA_AES_256_CBC_SHA256 (v1.2) 2. Fig-
ure 3 shows that monTLS improves the performance of TLS
traffic monitoring by 2.5x to 4.5x over splitTLS (nginx) in
the GCM mode, and by 1.5x to 3.0x in the CBC mode. The
performance improvement over mcTLS is much larger – by
2.4x to 6.3x due to the extra overhead of mcTLS. When all
connections are ephemeral and the object size is small (1KB),
monTLS outperforms splitTLS by 63.5x as splitTLS must
run TLS handshake per each split connection while monTLS
does not participate in the handshake – it simply relays the
packets for TLS handshake for endpoints.

4 Conclusion

TLS and TLS traffic monitoring are fundamentally in conflict
as the latter operates by breaking at least one property of TLS
– confidentiality. However, TLS middleboxes are unlikely to
go away unless the needs for security monitoring disappears.
In this abstract, we argue that existing security enhance-
ment works have neglected the performance aspect and that
a generalized architecture would be often unnecessary for
client-side monitoring. We show that monTLS brings a great
potential for improving the performance without sacrificing
the security.
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