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Abstract
Recently many Internet services employ wide-area

platforms to improve the end-user experience in the
WAN. To maintain close control over their remote nodes,
the wide-area systems require low-latency dissemination
of new updates for system configurations, customer re-
quirements, and task lists at runtime. However, we ob-
serve that existing data transfer systems focus on re-
source efficiency for open client populations, rather than
focusing on completion latency for a known set of nodes.
In examining this problem, we find that optimizing for
latency produces strategies radically different from exist-
ing systems, and can dramatically reduce latency across
a wide range of scenarios.

This paper presents a latency-sensitive file transfer
system, Lsync that can be used as synchronization build-
ing block for wide-area systems where latency matters.
Lsync performs novel node selection, scheduling, and
adaptive policy switching that dynamically chooses the
best strategy using information available at runtime. Our
evaluation results from a PlanetLab deployment show
that Lsync outperforms a wide variety of data transfer
systems and achieves significantly higher synchroniza-
tion ratio even under frequent file updates.

1 Introduction
Low-latency data dissemination is essential for coordi-
nating remote nodes in wide-area distributed systems.
The systems need to disseminate new data to remote
nodes with minimal latency when distributing new con-
figurations, when coordinating task lists among multiple
endpoints, or when optimizing system performance un-
der dynamically changing network conditions. All of
the scenarios involve latency-sensitive synchronization,
where the enforced synchronization barrier can limit
overall system performance and responsiveness.

The effects of synchronization latency will become
increasingly more important as more Internet services
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Figure 1: Slow Nodes in Overlay – Peering strategies in scal-
able one-to-many data transfer systems are not favorable to
slow nodes.

leverage distributed platforms to accelerate their appli-
cations in the WAN. Recent trends show that many com-
panies employ distributed caching services [4, 18] and
WAN optimization appliances [24], or deploy their ap-
plications at the Internet edges close to the end users [12]
to improve the user experience. These platforms should
handle frequently-changing customer requirements and
adapt to dynamic network conditions at runtime. For in-
stance, Akamai [2] reports that its management server re-
ceives five configuration updates per minute that need to
be propagated to remote CDN nodes immediately [26].
If these systems face long synchronization delays, possi-
bilities include service disruption, inconsistent behavior
at different replicas visible to end users, or increased ap-
plication complexity to try to mask such effects.

The latency is measured as the total completion time
of file transfer to all target remote nodes. In wide-area
systems, it is usual that a number of nodes experience
network performance problems and/or lag far behind up-
to-date synchronization state at any given time. We ob-
serve these slow nodes typically dominate the comple-
tion time, which means that managing their tail latency
is crucial for latency-sensitive synchronization.

Although numerous systems have been proposed for
scalable one-to-many data transfers [8, 10, 16, 17, 19,
21], they largely ignore the latency issue because re-
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source efficiency is typically their primary concern for
serving an open client population. In an open client pop-
ulation, there is no upper bound on the number of clients,
so the systems aim to maximize average performance or
aggregate throughput in the system.

As a result, those systems are not favorable to slow
nodes (Figure 1). For instance, many overlay multi-
cast systems attempt to place well-provisioned fast nodes
close to the root of the multicast tree while pushing slow
nodes down the tree. Likewise, the peering strategies
used in CDN/P2P systems make slow nodes have little
chance to download from fast nodes. The random gossip-
ing in epidemic routing protocol helps slow nodes peer
with fast nodes, but only for a short-term period. These
peering strategies not only produce long completion time
but make the systems highly vulnerable to changes in
slow node’s network condition. Despite these disadvan-
tages, it is common that existing services rely on one of
the data transfer schemes for coordinating their remote
nodes.

In this paper, we explore general file transfer poli-
cies for latency-sensitive synchronization with the goal
of minimizing completion time in a closed client popu-
lation. This completion time metric drives us to examine
new optimization opportunities that may not be advis-
able for systems with open client populations. In partic-
ular, we aggressively use spare bandwidth in the origin
server to assist nodes that experience transient/persistent
performance problems in the overlay mesh at runtime.
The server allocates its bandwidth in a manner favorable
to the slow nodes while synchronizing the other nodes
through existing overlay mesh. This server-assisted
synchronization reduces the tail latency in slow nodes
without sacrificing scalable data transfers in the overlay
mesh, which drastically improves the completion time
and achieves stable file transfer.

For evaluation of our policies, we develop Lsync, a
low-latency file transfer system for wide-area distributed
systems. Lsync can be used as synchronization building
block for wide-area distributed systems where latency
matters. Lsync continuously disseminates files in the
background, monitoring file changes and choosing the
best strategy based on information available at runtime.
Lsync is designed to be easily pluggable into existing
systems. Users can specify a local directory to be syn-
chronized across remote machines, and give Lsync the
information about target remote nodes. Other systems
can use Lsync by simply dropping files into the directory
monitored by Lsync when the files need latency-sensitive
synchronization.

We evaluate Lsync against a wide variety of data trans-
fer systems, including a commercial CDN. Our evalua-
tion results from a PlanetLab [1] deployment show that
Lsync can drastically reduce latency compared to exist-
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Figure 2: Synchronization Environment – the server has files
to transfer to remote nodes with low completion latency. The
remote nodes construct an overlay mesh for providing services
to external clients.

ing file transfer systems, often needing only a few sec-
onds for synchronizing hundreds of nodes. When we
generate a 1-hour workload similar to the frequent con-
figuration updates in Akamai CDN, Lsync achieves sig-
nificantly higher synchronization ratio than the alterna-
tives throughout the experiment.

The rest of this paper is organized into following sec-
tions. In Section 2, we describe the model and assump-
tions for our problem. Based on the model, we discuss
how to allocate server’s bandwidth to slow nodes in Sec-
tion 3. In Section 4, we describe how to divide nodes
between server and overlay mesh in a way to minimize
the total latency. We describe the implementation in Sec-
tion 5 and evaluate it on PlanetLab in Section 6.

2 Synchronization Environment

In this section, we describe the basic operational model
used for Lsync, along with the assumptions we make
about its usage.

Operational model We assume one dedicated server
that coordinates a set of remote nodes, N, geographically
distributed in the WAN, as shown in Figure 2. The man-
agement server has an uplink capacity of C, and can com-
municate with each remote node ni with bandwidth bi

e2e.
The C value is configurable, and represents the maximum
bandwidth that can be used for remote synchronization.
The bi

e2e values are updated using a history-based adap-
tation technique, described in Section 4.5, to adjust to
variations in available bandwidth. The server knows the
amount of new data by detecting file changes in the back-
ground as described in Section 5.

Many distributed systems construct an overlay mesh
among their remote nodes to use scalable data transfer
systems. If an overlay mesh is available and certain con-
ditions are met, Lsync leverages it for fast synchroniza-
tion. To make Lsync easily pluggable into existing sys-
tems, we do not require modification of a given over-
lay’s behavior. Instead, Lsync characterizes the overlay
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mesh using a black-box approach to estimate its startup
latency. Based on the estimation, Lsync determines how
to adjust workload across the server and the overlay.
Target environments This model is appropriate for our
target environments, where a large number of nodes are
geographically distributed without heavy concentrations
in any single datacenter.1 Our target environments also
require that we exclude IP multicast, due to the problems
stemming from lack of widespread deployment and co-
ordination across different ASes.

Examples of current systems where our intended ap-
proach may be applicable include distributed caching
services [4, 18], WAN optimization appliances [24], dis-
tributed computation systems [25], edge computing plat-
forms [12], wide-area testbeds (PlanetLab, OneLab), and
managed P2P systems [20]. In addition, with most ma-
jor switch/router vendors announcing support for pro-
grammable blades for their next-generation networks,
virtually every large network will soon be capable of be-
ing a distributed service platform.
Target remote nodes In Lsync, users can specify target
remote nodes in various ways. For global updates, users
will configure Lsync to optimize the latency for updat-
ing all remote nodes. For partial updates, it is possible
to select a subset of specific remote nodes to synchro-
nize. Users can also specify a certain fraction of nodes
that need to be synchronized fast for satisfying certain
consistency models or incremental rollouts of new con-
figurations in the system. We name the parameter target
synchronization ratio denoted by r, for the rest of the pa-
per. This enables Lsync to use intelligent node selection,
which is particularly effective for disseminating frequent
updates.

3 Server Bandwidth Allocation
Lsync’s file transfer policy combines multiple factors
that contribute to the overall time reduction. We quantify
the benefits separately, so we describe steps separately
in the paper. After adjusting workload across server and
overlay, Lsync exploits the server’s spare bandwidth to
speed up synchronizing the overlay mesh. In this sec-
tion, we begin by examining the effects of the server’s
bandwidth allocation policies on completion latency.

Figure 3 shows an example of the timeline when the
server transfers files to a set of target remote nodes,
Ntarget ⊂ N. The server detects a new file fnew at time
t0. Each horizontal bar corresponds to a remote node,
ni ∈ Ntarget , that has variable-sized unsynchronized data
f i
prev remaining from previous transfers. The areas of

f i
prev and fnew represent the sizes of the files, | f i

prev| and

1The intra-datacenter bandwidths are sufficient to make the syn-
chronization latency less of an issue in that environment.
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Figure 3: Timeline of Synchronization – The completion
time Tcmp is determined by the node with the latest finish time
among the target nodes Ntarget .

| fnew| , respectively. The height of the bar, bi
e2e, is the

end-to-end bandwidth from the server to ni that starts its
transfer after a pending time t i

pend . At any given time
t, the sum of the heights of the bars should not exceed
the server’s upload capacity C in order to avoid self-
congestion and associated problems stemming from the
server overload [3].

The completion time, Tcmp, is calculated as

Tcmp = t0 +max
i

(
t i
pend +

| f i
prev|+ | fnew|

bi
e2e

)
(1)

for ni ∈ Ntarget . There are two variables that the server
can control transparently to the remote nodes. The server
can determine t i

pend that ni should wait before starting its
transfer. The server can also select nodes for Ntarget if a
target synchronization ratio is given. From the perspec-
tive of the server, controlling these two variables corre-
sponds to node scheduling and node selection policies
in the server, respectively. The basic intuition behind
the policies is that we could reduce the latency by giv-
ing low t i

pend to slow nodes and carefully selecting nodes
for Ntarget . In the following sections, we compare dif-
ferent policies using real measurements on PlanetLab to
quantify their effects on latency.

3.1 Node Scheduling
We begin by examining how we schedule transfers when
the number of transfers exceeds the outbound capacity of
the server. This is the problem of minimizing makespan,
which is NP-hard [7]. We compare two basic scheduling
heuristics, Fast First and Slow First. The Fast First is
similar to Shortest Remaining Processing Time (SRPT)
scheduling in that the server’s resource is allocated to
the node who has the shortest expected completion time.
SRPT is known to be optimal for minimizing mean re-
sponse time [6]. The Slow First is the opposite of the
Fast First policy, and selects the nodes with the longest
expected completion time when the server has available
bandwidth.
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Figure 4: Node Scheduling and Node Selection – Pruned
Slow First captures both the initial speed advantage of Fast
First, as well as the total overall advantage of Slow First.

We compare the two schedulers on PlanetLab nodes.
We implement the policies in a dedicated server that has
100 Mbps upload capacity. Then we generate two files –
fnew (1 MB), and fprev (10 MB) that has been in the pro-
cess of synchronization on the nodes, from 1% to 99%
complete. We measure the time to synchronize all live
PlanetLab nodes (559 nodes at the time of the experi-
ments) with either of the two scheduling modes enabled.

The result of the measurement is shown in Figure 4.
Fast First synchronizes most nodes faster than Slow First,
but at high target ratios, Fast First performs much worse.
The reason for the difference is somewhat obvious: near
the end of the transfers in Fast First, only slow nodes
remain, and the server’s uplink becomes underutilized.
This underutilization occurs for the final 175 seconds in
Fast First, but only for 0.5 seconds in Slow First. We also
evaluated Random scheduling, which selects a random
node to allocate available bandwidth. From 10 repeated
experiments, we found that Random scheduling yields
completion times between Fast First and Slow First, but
generally closer to Slow First for all target ratios.

This result implies that slow nodes dominate the com-
pletion time in the WAN and that the Slow First schedul-
ing can mask their effects on latency. Another implica-
tion of the result is that offline optimization will provide
little benefit in the scenario. Note that the server’s band-
width is underutilized only for 0.5 seconds in Slow First.
This means that no scheduler can reduce the latency by
more than 0.5 seconds in the setting. In addition, our
evaluation results show that runtime adaptation has a sig-
nificant impact on latency, which offline schedulers can-
not provide.

3.2 Node Selection
In this section, we examine the effect of node selection.
In Lsync, users can specify their requirements in the form
of target synchronization ratio, a fraction of nodes that
need to be synchronized fast. If the ratio is given, Lsync
attempts to find a subset of nodes that could further re-
duce latency.
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Figure 5: Synchronizing Frequent Updates – While Fast
First synchronizes quickly at first, Pruned Slow First actually
reaches the upper bound more quickly.

We show that integrating node selection with Slow
First scheduling can blend the best behaviors of Slow
First and Fast First. Given target ratio r, we first sort all
nodes in an increasing order of the estimated remaining
synchronization time. We then pick Ns · r nodes where
Ns denotes the number of nodes in N, and use Slow
First scheduling for the selected nodes. The remaining
Ns · (1− r) nodes are synchronized using Slow First as
well after the selected nodes are finished. As a result, the
completion time does not suffer either from the slow syn-
chronization in the beginning (Slow First) or the long tail
at the end (Fast First). We name the integrated scheme
Pruned Slow First for comparison. Figure 4 shows that
Pruned Slow First outperforms the other scheduling poli-
cies across all target ratios.

We examine a dynamic file update scenario where new
files are frequently added to the server, which is common
in large-scale distributed services. For an in-depth anal-
ysis, we use simulations for the experiment. We generate
2000 nodes with bandwidths drawn from the distribution
of the inter-node bandwidths on PlanetLab.

We study how these frequent updates affect the syn-
chronization process. Given information about available
resources, we can determine how much change the server
can afford to propagate. We define update rate, u, as the
amount of new content to be synchronized per unit time
(one second). Then, Ns ·u is the minimum bandwidth re-
quired to synchronize all Ns nodes with u rate of change.
The upper bound on the achievable synchronization ratio
is C

Ns·u where C is the server’s upload capacity. C is set to
100 Mbps in the experiment.

Figure 5 shows each policy’s performance under fre-
quent updates. As before, the server has two files, 1 MB
and 10 MB that are in the process of synchronization,
and new files are constantly added to the server with an
update rate 100 Kbps. The upper bound is 0.5 in this
setting, and no policy can reach beyond this limit.

We see that the completion time drastically changes
as we use different policies. In particular, the synchro-
nization ratio of Slow First drops over time and reaches
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Figure 6: Synchronization Latency for Frequent Updates –
While Slow First leads to failure, integrating node selection
with the Slow First scheduling reduces latency for all target
ratios (y-axis is in log-scale).

0 near 6800 seconds because it gives high priority to
the nodes that are far behind up-to-date synchronization
state. Fast First synchronizes nodes quickly in the be-
ginning, but asymptotically approaches the upper bound
since the remaining slower nodes make little forward
progress given the rate of change.

To examine the performance of Pruned Slow First, we
set r to 0.49, which is slightly below the upper bound 0.5
in this setting. In Figure 5, Pruned Slow First is worse
than Fast First in the beginning, but it reaches its target
ratio much earlier than the other policies. Pruned Slow
First reduces the completion time by 56% compared with
Fast First, showing that the best policy can provide sig-
nificant latency gains, while the worst policy, Slow First,
actually leads to failure in this scenario. In Figure 6, we
show the completion time of each policy for a range of
feasible r values. The Pruned Slow First outperforms the
other policies for every target ratio (the y-axis is in log-
scale).

We showed that the Slow First scheduling helps reduce
completion latency, and integrating node selection with
the Slow First scheduling can further reduce latency par-
ticularly when handling frequent updates. Based on the
observations, we extend our discussion to examine how
to leverage overlay mesh for latency-sensitive synchro-
nization in the next section.

4 Leveraging Overlay Mesh
With a better understanding of the bandwidth allocation
policies in the server, we focus on understanding how
to leverage scalable one-to-many data transfer systems
which we collectively name CDN/P2P systems for the
rest of the paper. Many large-scale distributed services
construct an overlay mesh for scalable data transfer to
external clients, and often use the overlay mesh for in-
ternal data dissemination to remote nodes as well [26].
In this section, we explore how to leverage the overlay
mesh to reduce synchronization latency without chang-
ing its behaviors.

Server
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α copies
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Tprop

Re2ebe2e
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Bcdn
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network delays, etc
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Figure 7: Startup Latency in CDN/P2P – To leverage a given
overlay system, Lsync estimates the startup latency for fetch-
ing a new file f from the server and propagating to the remote
nodes ni in the overlay.

4.1 Startup Latency in Overlay Mesh
To leverage a given overlay mesh, Lsync needs to pre-
dict startup latency for distributing a new file that is not
cached on the remote nodes in the overlay. However, it
is difficult to predict the accurate latency since CDN/P2P
systems typically have diverse peering strategies and dy-
namic routing mechanisms. To allow easy integration
with existing systems, Lsync uses a black-box approach
to characterizing a given overlay mesh to estimate its
startup latency.

Figure 7 presents a general model showing how a new
file f in the server is propagated to a remote node ni via
overlay mesh. Ps is a peer node contacting the server
to fetch f , and Pd is a peer node that ni contacts. If f
is already cached in Pd , ni will receive it directly from
Pd . However, in latency-sensitive synchronization, all
target nodes attempt to fetch f as soon as it is avail-
able in the server. In case f should be fetched from
the server, the CDN/P2P system selects node Ps to con-
tact the server. Depending on the system’s configuration,
multiple copies of the file can be fetched into the over-
lay mesh. The fetched file is propagated from Ps to Pd
possibly through some intermediate overlay nodes, and
delivered to ni. Tprop is the propagation delay from Ps to
Pd . In addition to the network delay between peer nodes,
Tprop also includes other overheads such as peer lookups
and exchange of control messages, which are system-
specific. The bandwidth and RTT between CDN/P2P
peer nodes are Bcdn and Rcdn respectively.

For the simplicity of the model, we begin with an
ideal assumption that nodes in CDN/P2P are uniformly
distributed, and thus the bandwidth and RTT between
neighboring nodes are constants, Bcdn and Rcdn. How-
ever, we will adjust the parameter values later to account
for their variations on real deployment in the WAN. This
model is not tied to a particular CDN/P2P system or any
specific algorithms such as peer selection and request
redirection. We apply the model to different types of
deployed CDN/P2P systems in Section 6.2. We show
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that the model captures the salient characteristics of these
systems, and that Lsync can adjust its transfers to utilize
each of these systems.

4.2 Completion Time Estimation
To schedule workload across server and overlay mesh,
Lsync first estimates the expected completion time in the
overlay mesh. The setup cost, δ , measures the first-byte
latency for fetching newly-created content through the
overlay mesh. Specifically, δ is defined as

δ = 2 ·Rcdn +Tprop (2)

The overall overlay completion time, Tcdn, can be cal-
culated as follows: To distribute f to ni, the server in-
forms ni of the new content availability, taking time Re2e.
Then, ni contacts Pd , and starts receiving the file with
delay δ . Delivering the entire file to ni with bandwidth
Bcdn requires time fs

Bcdn
where fs denotes the size of f .

The total time, Tcdn is then the sum,

Tcdn = Re2e +δ +
fs

Bcdn
(3)

Note that Tcdn does not depend on r because all target
nodes fetch f simultaneously via the overlay. In compar-
ison, the end-to-end completion time, Te2e(r), for trans-
ferring f to remote nodes using Pruned Slow First is

Te2e(r) = Re2e +
Ns · r · fs

C
(4)

where C is the server’s upload capacity.

4.3 Selective Use of Overlay Mesh
If a given CDN/P2P system has high startup latency,
it will outperform end-to-end transfers only when its
bandwidth efficiency can outweigh the cost. After the
server estimates Tcdn and Te2e(r), the server can dynam-
ically choose between end-to-end transfers and the over-
lay mesh to get better latency. In this section, we examine
the conditions that such a selective use of overlay mesh
can provide benefits in a real deployment.

To get a more accurate estimation of the completion
time, we extend Tcdn in (3) to reflect the fact that the
bandwidth distribution of a CDN/P2P system is not uni-
form. Rather than modeling each node’s bandwidth sep-
arately, we use the minimum bandwidth value for the top
Ns · r nodes, yielding

Tcdn(r) = Re2e +δ
r +

fs

Br
cdn

(5)

Br
cdn is the Ns · r th largest Bcdn, and δ r is the Ns · r th

smallest setup cost. As we increase r, by definition, Br
cdn

will monotonically decrease, and δ r will monotonically
increase.
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Figure 8: End-to-End Connections vs. Overlay Mesh – For
small file, the latency of overlay mesh is hampered by the long
setup time, but its efficient bandwidth usage outweighs the cost
for large file.

Now we can compare Tcdn(r) with Te2e(r) and then
use either end-to-end connections or the overlay mesh as
appropriate. The decision process can be formally de-
fined as following. The server uses end-to-end connec-
tions when either of the following conditions is met.

fs < δ
r ·

C ·Br
cdn

Ns · r ·Br
cdn−C

(6)

Br
cdn <

C
Ns · r

(7)

From the above test conditions, we can draw the follow-
ing general guidelines. Using end-to-end connections is
better when (1) the file size fs is small, (2) the overlay
setup cost δ r is large, (3) the server’s upload capacity
C is high, (4) the target synchronization ratio r is low,
(5) the client population Ns is small, or (6) the overlay
bandwidth Br

cdn is significantly smaller than the server’s
bandwidth.

We examine the potential benefits of the scheme by
comparing end-to-end transfers with CoBlitz CDN [19]
on PlanetLab. Beyond PlanetLab, CoBlitz has been used
in a number of commercial trial services [11], and we
believe CoBlitz represents one of the typical CDN ser-
vices currently available. For end-to-end transfers, we
use Pruned Slow First policy for allocating the server’s
bandwidth.

Figure 8 shows the latency for synchronizing a small
file (5 KB) and a large file (5 MB). For a small file, using
end-to-end transfers shows better performance than the
CDN because the completion time of the CDN is ham-
pered by its setup cost. When transferring a large file, the
CDN shows better performance since its efficient band-
width usage outweighs the setup cost in the CDN.

Wide-area systems typically disseminate files of vary-
ing sizes. For instance, Akamai management server has
file transfers spanning 1 KB to 100 MB. The measure-
ment results in Figure 8 imply that Lsync will need dif-
ferent strategies for different file sizes to address the
tradeoffs between startup latency and bandwidth effi-
ciency of the overlay mesh.
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Figure 9: Optimality of the Division – The split between over-
lay and E2E is not improved by moving some nodes to the other
mechanism, suggesting that Lsync’s split is close to optimal.

4.4 Using Spare Bandwidth in Server
When nodes are being served by the overlay mesh, the
origin server load is greatly reduced, leading to spare
bandwidth that can then be used to serve some nodes by-
passing the overlay. Given r, Lsync divides remote nodes
into two groups. One group directly contacts the origin
server, and the other group downloads the file via the
overlay mesh. Lsync adds nodes with the worst overlay
performance to the end-to-end group until the expected
end-to-end completion time matches the overlay comple-
tion time.

More formally, Lsync calculates re2e, the ratio of
nodes to place in the end-to-end group. After re2e is de-
termined, Lsync selects the Ns · (r− re2e) nodes having
the fastest overlay connections. From (5), the overlay
completion time is estimated as Tcdn(r− re2e). The re-
maining Ns · re2e nodes will use end-to-end connections.
To estimate the spare bandwidth in the server, we con-
sider CDN load factor α , which represents how many
copies are fetched from the origin server into the over-
lay mesh. Different systems have different load factors,
and the CoBlitz fetches 9 copies from the origin server.
As the origin server is supposed to send α copies of f to
the overlay group, Lsync should reserve Bload bandwidth
which is α· fs

Tcdn(r−re2e)
for overlay traffic, yielding a value

of (C−Bload) for the server’s spare bandwidth. Using
this spare bandwidth, the end-to-end completion time is

Te2e(re2e) = Re2e +
Ns · re2e · fs

C−Bload
(8)

Then, Lsync calculates re2e that makes the two groups
complete at the same time.

We simulate synchronizing PlanetLab nodes using the
bandwidths and setup costs measured in all PlanetLab
nodes. Figure 9 shows a sensitivity analysis of re2e, with
two other simulations for slightly higher and lower val-
ues of re2e, in sending a 5 MB file. Lsync outperforms
both for all target ratios, suggesting that it is choosing the
optimal balance of the two groups.

4.5 Adaptive Switching in Remote Nodes
To mitigate the effect of real-world bandwidth fluctua-
tions, we add a dynamic adaptation technique to Lsync.
The main observation behind the technique is that minor
variations in performance do not matter for most nodes,
since most nodes will not be the bottleneck nodes in the
transfer. However, when a node that is close to being
the slowest in the overlay group becomes slower, it risks
becoming the bottleneck during file transfer. The lower
bound on the overlay bandwidth is Br−re2e

cdn .
When the origin server informs the remote nodes of

new content availability, the server sends Br−re2e
cdn and

Tcdn(r− re2e). After Tcdn(r− re2e) passes, if a node is
not finished, it compares the current overlay performance
with Br−re2e

cdn . If the current performance is significantly
lower than the expected lower bound, the node stops
downloading from the overlay mesh, and directly goes to
the origin server to download the remaining data of the
file. In our evaluation, we configure the node to switch
to the origin server when its overlay performance drops
below 75% of its expected value. Our evaluation results
show that using adaptive switching improves the comple-
tion time while lowering variations.

5 Implementation

Lsync is a daemon that performs two functions – in one
setting, it operates in the background on the server to
detect file changes, manage histories, and plan the syn-
chronization process. In its second setting, it runs on all
remote nodes to coordinate the synchronization process.
Both modes of operation are implemented in the same bi-
nary, which is created from 6,586 lines of C code. Lsync
daemon implements all the techniques described in the
previous sections.

Since Lsync is intended to be easily deployable, it op-
erates entirely in user space. Using Linux’s inotify mech-
anism, the daemon specifies files and directories that are
to be watched for changes – any change results in an
event being generated, which eliminates the need to con-
stantly poll all files for changes. When the Lsync daemon
starts, it performs a per-chunk checksum of all files in all
of the directories it has been told to watch using Rabin’s
fingerprinting algorithm [23] and SHA-1 hashes. Once
Lsync is told a file has been changed, it recomputes the
checksums to determine what parts of the file have been
changed. If new files are created, Lsync receives a no-
tification that the directory itself has changed, and the
directory is searched to see if files have been created or
deleted.

Once Lsync detects changes, it writes the changes into
a log file, along with other identifying information. This
log file is sent to the chosen remote Lsync daemons, ei-
ther by direct transfer, or by copying the log file to a Web-
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Systems δ r Br
cdn

Division Ratio
E2E Overlay

CoBlitz 1.4 1.2 0.24 0.76
Coral 7.6 0.6 0.52 0.48
BitTorrent 29.7 4.7 0.30 0.70

Table 1: Division of Nodes between E2E and overlay
mesh. r is 0.5, and file size is 5 MB. We also tested
small files (up to 30 KB), but E2E outperformed all these
systems. δ r is in seconds, and Br

cdn is in Mbps.

accessible directory and informing the remote daemons
to grab the file using a CDN/P2P system. Once the re-
mote daemon receives a log file, it applies the necessary
changes to its local copies of the file.

6 Evaluation
In this section, we evaluate Lsync and its underlying
policies on PlanetLab. Each experiment is repeated 10
times with each setting, and 95th percentile confidence
intervals are provided where appropriate.

6.1 Settings
We deploy Lsync on all live PlanetLab nodes (528 nodes
at the time of our experiments), and run a dedicated
origin server with 100 Mbps outbound capacity. The
server has a 2.4 GHz dual-core Intel processor with 4 MB
cache, and runs Apache 2.2.6 on Linux 2.6.23. We mea-
sure latency for a set of target synchronization ratios in-
cluding 0.05, 0.25, 0.5, 0.75, and 0.98. We use a maxi-
mum synchronization level of 0.98 to account for nodes
that may become unreachable during our experiments.
Lsync attempts to achieve the given target ratio fast while
leaving other available nodes synchronized via overlay in
the background.

6.2 Startup Latency in CDN/P2P Systems
CDN/P2P designers typically expect that the steady state
of the CDN/P2P system is that the content is already
pulled from the origin, and is being served to clients over
a much longer lifetime with high cache hit ratio. How-
ever, for synchronization, remote nodes typically request
changes that are not in their overlay mesh. Therefore,
Lsync monitors the performance of first fetching content
from the origin server, which was not a major issue in
existing CDN/P2P systems.

Using our black-box model described in Section 4.1,
we measured parameters, δ r and Br

cdn, for two running
CDN systems and one P2P system that we deploy on
PlanetLab. Table 1 shows the setup costs and bandwidths
of the three systems. Each system was characterized by
simply fetching new content from the remote nodes, and
measuring each node’s first-byte latency and bandwidth.

The three systems show interesting differences in behav-
ior. BitTorrent spends more time getting the content ini-
tially, but then has higher bandwidth. The CDN systems
show relatively low setup costs because they were de-
signed for delivering web objects to clients rather than
sharing large files.

The table also shows how Lsync would allocate nodes
between overlay transfers and end-to-end transfers for
a synchronization level of 0.5. For small file transfers,
Lsync opts to use end-to-end connections rather than
any of the systems. For larger transfers, the fraction as-
signed to direct end-to-end transfers is determined by the
tradeoff between latency and bandwidth. For CoBlitz
(with the lowest latency) and BitTorrent (with the high-
est bandwidth), Lsync assigns most nodes to the over-
lay group. For Coral, with slightly higher latency and
lower bandwidth, Lsync assigns nodes roughly equally
between overlay and E2E. We select CoBlitz for the rest
of our experiments, mostly due to its low latency.

6.3 Comparison with Other Systems
We compare Lsync with different types of data trans-
fer systems. We transfer our CoBlitz web proxy exe-
cutable file (600 KB) to all PlanetLab nodes using each
of the systems, and measure completion times (Fig-
ure 10). Each system is designed for robust broadcast
(epidemic routing), simple cloning (Rsync), bandwidth
efficiency (CDN), and high throughput and fairness (P2P
systems). We evaluate the performance of the systems
when they are used for latency-sensitive synchronization
in the WAN.

Rsync Rsync [27] is an end-to-end file synchronization
tool widely used for cloning files across remote ma-
chines. It uses delta encoding to minimize the amount of
transferred data for changes in existing files. In this ex-
periment, however, the server synchronizes a newly gen-
erated file not available in remote nodes, so the amount
of the transferred data is the same as in the other tested
systems. The Rsync server relies only on end-to-end
connections to remote nodes for synchronizing the file,
and does not use any policies in allocating server’s band-
width. Therefore, the result of Rsync represents the per-
formance of end-to-end transfers with no policy applied.
P2P systems We use BitTorrent [9] and BitTyrant [21]
as examples of P2P systems. Although BitTorrent has a
high setup cost (Table 1), it performs better than end-to-
end copying tools (Rsync) for target ratio of 0.5 because
the majority of nodes have high throughput. However,
BitTorrent ends up with very long completion time (424
seconds) and high variations (standard deviation 193) for
the target ratio of 0.98. This is because, with BitTor-
rent, slow nodes have little chance to download from peer
nodes with good network conditions, which makes the
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Figure 10: Comparison with Other Systems – We compare Lsync with various data transfer systems in terms of the latency for
synchronizing CoBlitz web proxy executable file (600 KB).

slow nodes finish more slowly than in other systems. We
see the similar trend with BitTyrant.
Epidemic routing We also implemented epidemic rout-
ing (or gossip) protocol [8] to measure its latency in the
WAN. In the protocol, each node picks a random subset
of remote nodes periodically, and exchanges file chunks.
For a conservative evaluation, we assume that every node
has the full membership information to avoid member-
ship management, which is known to be the main over-
head of the protocol [15]. There are two key parameters
in the gossip protocol: how often the nodes perform gos-
sip (step interval) and how many peers to gossip with
(fanout). These two parameters directly impact on the
protocol’s performance, but it is hard to tune them be-
cause of their sensitivity to network conditions. To find
the best configuration for our experiments, we tried a
range of values for step interval (0.5, 1, 5, and 10 sec-
onds) and fanout (1, 5, 10, 50, and 100 nodes). Then we
picked a configuration that generated the shortest latency.
Since we use our own implementation of the protocol,
we first compared our implementation with published
performance results of the protocol in a similar setting.
CREW [13] used the gossip protocol for rapid file dis-
semination in the WAN and outperformed Bullet [17]
and SplitStream [10] in terms of completion time in the
evaluation. Our implementation showed a comparable
latency (141 seconds) to CREW’s result (200 seconds)
under the same setting (60 nodes, 600 KB file, 200 Kbps
bandwidth).2

“Epidemic Routing (best)” in Figure 10 represents the
results with the best configuration that we found, (1 sec-
ond interval and 10 fanout), and “Epidemic Routing”
shows the average performance of all configurations that
we tested (excluding cases with 30 minutes timeout).
The result with the tuned configuration always outper-

2As the topology is not specified, we randomly selected 60 Plan-
etLab nodes, and averaged over 10 repeated experiments. We used a
user-level traffic shaper, Trickle [14], for setting bandwidth on the se-
lected PlanetLab nodes.

forms the average case. Both of the results show inter-
esting patterns in completion time. The protocol works
worse than both Rsync and P2P systems at low target ra-
tio because file chunks are disseminated only during gos-
sip rounds. The file data is disseminated relatively slow
in the beginning. However, the gossip protocol outper-
forms the other systems at target ratio of 0.98. Unlike in
P2P systems, the slow nodes have better chances to peer
with fast nodes during file transfer. As a result, they do
not become bottleneck in overall completion time. The
random peering policy in the gossip protocol helps slow
nodes to catch up with other nodes, but the protocol is
typically more optimized for robust dissemination than
latency.
Commercial CDNs Since our CDN is deployed on
PlanetLab, one may think its performance is adversely
affected by some of overloaded PlanetLab nodes. We
measure synchronization latency using a commercial
CDN, Amazon CloudFront [4]. CloudFront is faster than
the other systems for the low target ratio due to its well-
provisioned CDN nodes. However, we observe that some
nodes are still slow in fetching new file from the CDN.
Specifically, 11% of PlanetLab nodes spend more than
20 seconds downloading the file from CloudFront, and
the slowest nodes are in Egypt, Tunisia, Argentina, and
Australia. As the file is not cached in the CDN, the
slow nodes should fetch the file possibly through mul-
tiple intermediate nodes in the overlay. This internal be-
havior depends on system-specific routing mechanisms,
which is not visible outside of the overlay. We im-
plemented another version of Lsync, Lsync-CloudFront,
which incorporates CloudFront as its underlying overlay
mesh. Lsync-CloudFront estimates the overlay’s startup
latency, and focuses the server’s resource on the bot-
tleneck nodes at runtime. We find that the slow nodes
can be served better from the server than via the well-
provisioned overlay for uncached files, leading to the
best performance among the tested systems.
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Figure 11: Distribution of Completion Times – For all file sizes, Lsync outperforms the other systems because Lsync adjusts its
file transfer policies based on file size as well as network conditions.
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Figure 12: Frequently Added Files – Lsync makes most nodes
fully synchronized during the entire period of the experiment.

6.4 Frequently Added Files
In large-scale distributed services, file updates occur fre-
quently, and new files can be added to the server before
the previous updates are fully synchronized across nodes.
To evaluate Lsync under frequent updates, we gener-
ate a 1-hour workload based on the reported workload
of Akamai CDN’s configuration updates [26]. A new
file is added to the server every 10 seconds, and the file
size is drawn from the reported distribution in Akamai.
We compare Lsync with CoBlitz and Rsync. The two
systems represent alternative approaches: using overlay
mesh only (CoBlitz) and using end-to-end transfers only
(Rsync).

When a new file is added, we measure how many re-
mote nodes are fully synchronized with all previous files
and compute the average of the synchronization ratios
over one minute. Figure 12 shows the results over the
tested 1-hour period. The ratio temporarily drops for sev-
eral large file transfers, but Lsync makes 90% of nodes
remain fully synchronized for 72% of the tested period
while the other approaches do not reach the synchroniza-
tion ratio 0.9. Figure 11 shows the distributions of the
completion latency for 10 KB, 100 KB, and 1 MB files.

6.5 Lsync Contributing Factors
Lsync combines various techniques discussed in the pa-
per, including node scheduling, node selection, workload
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Figure 13: Lsync Contributing Factors – We see that each
component in Lsync contributes to the overall time reduction.

division across server and overlay, and adaptive switch-
ing in remote nodes. We examine the contribution of
each factor individually. We transfer CoBlitz web proxy
executable file (600 KB) to all remote nodes as before.
The results of these tests are shown in Figure 13. Vari-
ations of Lsync are shown with no scheduling or node
selection (No Policy), with only node scheduling (Slow
First Scheduling), with only node selection (Fast Node
Selection), with only overlay mesh (Using Overlay), and
with all factors enabled (Lsync).

At a high level, we see that the individual contributions
are significant, reducing the synchronization latency by
a factor of 4-5 versus having no intelligence in the sys-
tem. We see that performing scheduling improves the
completion time for every target ratio, but that intelli-
gent node selection is more critical at lower ratios. This
result makes sense, since finding the fast nodes is more
important when only a small fraction of the nodes are
needed. However, when the ratio is high and even slower
nodes are being included in the synchronization process,
scheduling is needed to mask the effects of the slow
nodes on the latency. The CDN is slow at low target
ratios, and becomes comparable to the best end-to-end
synchronization latency at high ratios due to its scalable
file transfers. However, it shows the worst latency with
high variations at the target ratio of 0.98 because some
nodes experience performance problems in the overlay.
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Lsync combines all the factors in a manner to reduce the
latency for all target ratios.

6.6 Nodes Division and Adaptive Switching
To see how Lsync adjusts workload across server and
overlay mesh, we further analyze how nodes are divided
into the overlay group and the end-to-end group. The
nodes in the groups are selected so that both groups are
expected to finish file transfer at the same time. In Fig-
ure 14, we plot the normalized sizes of the two groups
during a large file (5MB) transfer. As the target synchro-
nization ratio increases, a smaller fraction of nodes are
served using end-to-end transfers. However, for the tar-
get ratio of 0.98, the overlay group’s estimated comple-
tion time increases because of nodes with slow overlay
connectivity. Therefore, the ratio for the origin server
increases compared to the case of target ratio of 0.75.

Lsync makes adjustment at runtime, as can be seen in
Figure 15, where we plot the number of pending nodes
during file synchronization. The target synchronization
ratio is 0.98, and re2e, the ratio of nodes for end-to-end
connections, is 0.29. The two groups start downloading a
5 MB file through the overlay mesh and end-to-end con-
nections respectively. At 80 seconds, however, 12 nodes
in the overlay group detect that they are having unex-
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Figure 16: Stable File Transfers in Lsync – Adaptive switch-
ing in Lsync lowers variance of the latency.

pected overlay performance problems, and could nega-
tively affect the completion time. The nodes dynami-
cally switch to the end-to-end connections, and directly
download the remaining content from the origin server.
This behavior explains the small bump near 80 seconds
– when these nodes switch from the overlay group to the
end-to-end group, the number of unsynchronized end-to-
end nodes increases.

During 10 repeated experiments, an average of 27
nodes dynamically switched to end-to-end connections.
By assisting a few nodes in trouble, Lsync reduces the
completion time by 16%. In addition to the reduced com-
pletion time, the adaptive switching in Lsync provides
stable file transfers because it masks unpredictable vari-
ations in the overlay performance at runtime. Figure 16
plots the variations of the completion times with/without
adaptive switching in Lsync. The vertical bars plot the
coefficient of variance (normalized deviation) of comple-
tion times during repeated experiments. For every target
ratio, Lsync shows smaller variations compared to the
version with the switching disabled.

7 Related Work

CDNs and P2P systems [9, 16, 18, 19, 21] scalably dis-
tribute the content to a large number of clients. While
these systems achieve bandwidth efficiency and load re-
duction at the origin server, they typically sacrifice start-
up time and total synchronization latency for smaller
node groups. Likewise, peer-assisted swarm transfer sys-
tems [20] manage server’s bandwidth using a global opti-
mization, but they address bandwidth efficiency in multi-
swarm environments, not latency.

Our work on managing latency in distributed systems
is related in spirit to partial barrier [3] that is a relaxed
synchronization barrier for loosely coupled networked
systems. The proposed primitive provides dynamic knee
detection in the node arrival process, and allows applica-
tions to release the barrier early before slow nodes arrive.
Mantri [5] uses similar techniques to improve job com-
pletion time in Map-Reduce clusters.
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Lsync aggressively uses available resources because
it would otherwise remain unused. Another example is
dsync [22] that aggressively draws data from multiple
sources with varying performance. dsync schedules the
resources based on the estimated cost and benefit of op-
erations on each resource, and makes locally-optimal de-
cisions, whereas Lsync tries to perform globally-optimal
scheduling to reduce overall latency.

Gossip-based broadcast [8, 15] provides scalable and
robust event dissemination to a large number of nodes.
Our measurements demonstrate that the random peer-
ing strategy in the protocol helps reduce latency because
slow nodes are likely to find nodes with the disseminated
data after most fast nodes are synchronized. Lsync shows
better latency than the gossip protocol because it targets
the slow nodes from the beginning of file transfers, pre-
venting the slow nodes from being the bottleneck.

8 Conclusion
Low-latency data dissemination is important for coordi-
nating remote nodes in large-scale wide-area distributed
systems, but the latency has been largely ignored in de-
signing one-to-many file transfer systems. We found that
the latency is highly variable in heterogeneous network
environments, and many file transfer systems are subop-
timal for the metric. To solve this problem, we have iden-
tified the sources of the latency and described techniques
to reduce their impact on the latency (node schedul-
ing, node selection, workload adjustment, and dynamic
switching). We have presented Lsync that integrates all
the techniques in a manner to minimize latency based
on information available at runtime. In addition to stand-
alone application, we expect that Lsync is useful to many
wide-area distributed systems that need to coordinate the
behavior of remote nodes with minimal latency.
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