
A CASE FOR CACHING MIDDLEBOXES FOR SCALABLE MMT VIDEO DELIVERY

Sangwook Bae, Giyoung Nam, KyoungSoo Park

Department of Electrical Engineering, KAIST
{hoops, giyoung}@ndsl.kaist.ac.kr, kyoungsoo@ee.kaist.ac.kr

ABSTRACT

We present a content-based caching architecture for scalable
MMT video delivery. Our architecture places a caching proxy
in the path between an MMT server and its clients. Between
an MMT server and a caching proxy, we exploit the popular
HTTP protocol to reliably synchronize the video contents by
their fragments while the caching proxy delivers the MMT as-
set to the clients via the standard MMTP protocol. This split
architecture not only allows distributing the load on the MMT
server but also supports MMT clients without any modifica-
tion on the MMTP protocol. Furthermore, our architecture
supports content-based caching with little run-time overhead,
eliminating any redundant network transfers.

Index Terms— Content-based caching, MPEG Media
Transport, Middlebox

1. INTRODUCTION

Efficient on-line video delivery is increasingly important
as the demand for high-quality video streaming is rapidly
grows [1]. One prominent approach is HTTP-based adap-
tive streaming (HAS) [2–4] where video contents are divided
into smaller chunks and the clients fetch a stream of video
chunks as HTTP requests. The HAS clients dynamically de-
termine the video bit rate of each chunk by carefully esti-
mating the available network bandwidth in real time. Pop-
ular HAS protocols include Apple’s HLS [2] and Microsoft’s
Smooth Streaming [4], and MPEG’s standardized Dynamic
Adaptive Streaming over HTTP (DASH) [3].

Despite its growing popularity, HAS suffers from a num-
ber of drawbacks in practice. It is well-known that the rate
adaptation in the application layer is often in conflict with
TCP’s own congestion control [5]. Also, repeated patterns of
ON/OFF periods in chunk downloading creates unfair band-
width allocation across competing HAS clients [6, 7]. Fur-
thermore, the rate adaptation logic in the client often neglects
the existence of transparent caching servers, which leads to
overestimation of the available bandwidth and wrong choice
of video chunk bit rate [8].

Meanwhile, MPEG has standardized an alternative
video streaming technology called MPEG Media Trans-
port (MMT) [9]. Unlike DASH, MMT adopts the traditional

server-driven streaming model where a server selects a quality
of video for each client. It primarily uses UDP, and defines the
packet structure to suit the needs of fast adaptation of video
quality to varying network environments. MMT is gaining its
momentum especially with broadcasting companies [10, 11]
that want to control over the on-line broadcasting videos.

While MMT overcomes a few limitations of DASH, the
server-driven centralized architecture is generally construed
as anathema to the network research community. The key
challenge in MMT is the lack of server scalability as the num-
ber of clients grows. High computation overhead of rate adap-
tation for a large number of concurrent video streams often
limits the capacity of a single server.

In this work, we address the scalability challenge with the
MMT servers. Our basic idea is to exploit a number of MMT
caching middleboxes (MMT-CMB) in the path between the
clients and the server. Our caching middleboxes play two crit-
ical roles. First, they sit near to clients, and act as an MMT
server to clients and perform accurate video rate adaptation
by closely monitoring the level of network congestion in the
last-mile link. MMT-CMBs would reduce the computation
load from the server without any modification on the client
software. Second, they efficiently use the server-side band-
width by caching popular video chunks by their content. Ac-
cording to recent measurements [12, 13], up to 27% of pop-
ular YouTube contents are almost duplicates. Content-based
caching would suppress the redundancy across similar video
contents even though they are not identical.

We present the overall architecture of the MMT-CMB
system and a detailed protocol in the paths among clients,
MMT-CMBs, and MMT servers. We use the popular HTTP
protocol between an MMT-CMB and an MMT server to ex-
change video chunks while the MMT-CMB runs MMT pro-
tocol (MMTP) with the client for video streaming. Our pre-
liminary evaluation shows that the MMT-CMB system does
reduce the bandwidth consumption at the server for cached
contents while it accurately adapts the video rate to varying
network bandwidth of the client.

The rest of paper is organized as follows. In Section 2,
we provide the brief background of MMT and content-based
caching. Section 3 shows our overall design of the MMT-
CMB system and a detailed explanation of how MMT-CMB
fetches, caches, and delivers the content. In Section 4, we de-

c© 2015 IEEE 978-1-4799-7082-7/15/$31.00

52faefa234…123 SHA-1 Hash

ftyp/
styp	

m
m
p
u	

moov	

Media
track	

MMT
hint
track	

m
o
o
f	

mdat	

Hint Sample	

Media Sample

s
i
d
x	

mdat	

Hint Sample	

Media Sample

m
o
o
f	

mdat	

Hint Sample	

Media Sample

mdat	

Hint Sample	

Media Sample

Chunk

MPU

Chunk	 ID

Fig. 1. Chunk generation for MMT content

scribe our implementation and show preliminary evaluation,
and conclude in Section 5.

2. BACKGROUND

In this section, we provide brief background on the MMT file
structure and content-based caching.

2.1. Overview of MMT Content Structure
The MMT media format defines a logical structure called
package, which consists of multiple assets and the com-
position information (CI). An asset represents logically-
structured, encoded media data and the CI is used to help
deliver the assets to clients. An MMT asset has multiple me-
dia processing units (MPU)s, which correspond to the chunks
in DASH. As shown in figure 1, an MPU consists of a se-
ries of ’boxes’ such as mmpu, moov, moof, and mdat boxes.
The mmpu and moov boxes contain the metadata information
about the asset or package while the moof and mdat boxes
have the per-frame metadata in an MPU and the actual media
content, respectively. When an MPU is being delivered to a
client, it could be further fragmented into smaller units called
media fragmented unit(MFU)s. An MFU contains a frame
with its metadata. Since it is encoded independently, it can
be dropped to adapt to the network congestion, allowing the
server to enforce fine-grained rate adaptation.

2.2. Content-based Caching
Content-based caching caches an object by naming it as its
content hash. It typically divides a large content into smaller
’chunks’ using fixed or variable-sized chunking methods [14],
and uses their content hash as a chunk name, which is es-
sentially a tightly-bound summary of the chunk content. Us-
ing the chunk names, one can easily identify the same con-
tents with different URLs (e.g., aliases) or even a set of
partially-redundant chunks among similar but different con-
tents [12, 15]. If a sender and a receiver supports content-
based caching, the sender can transmit only the chunk names,
and the receiver checks with the names if those chunks exist in
its cache, and fetches only the cache missed chunks from the
server. This would eliminate the redundant data transfer in the
path between the sender and the receiver, and even saves the
cache storage at the receiver by suppressing the redundancy.

EPC

MMT
Caching Middlebox Web server Client

Wired backbone network
Efficient bandwidth usage

Bottlenecked last mile
Fine-grained adaptation

Fig. 2. Overview of MMT-CMB system

3. DESIGN
In this section, we present the challenges in adopting content-
based caching for MMT and describe our solutions. First, we
talk about chunk generation issues for content-based caching,
and then, we discuss some design issues about a content
caching system and its protocols for MMT-CMB.

3.1. Caching Unit and Chunk Name Generation
An MPU would serve as an ideal caching unit for content-
based caching. Unlike a variable chunking method like Ra-
bin’s fingerprinting, an MPU does not require any run-time
overhead in determining the boundary since its boundary is
determined at video encoding time by considering the video
content. However, we cannot blindly name each MPU by its
content hash, since MPUs could include different metadata
(e.g., asset ID or MPU sequence number) even though they
have the identical content.

To address this problem, we only hash the data in mdat
box, the video or audio data itself, for chunk name genera-
tion. In details, we concatenate all mdat boxes in an MPU
and run SHA-1 hash for the chunk name since there could
be multiple mdat boxes in an MPU1. This approach would
allow caching the same MPUs with different metadata as a
single chunk, which would improve the redundancy suppres-
sion rate. Figure 1 shows the process our system generates
the chunk and its name (chunk ID).

3.2. MMT Caching System
The MMT caching middlebox (MMT-CMB) system consists
of three entities: a Web server that understands the MMT-
CMB protocol (explained in Section 3.3), an MMT-CMB and
a client. Figure 2 shows the overview of the MMT-CMB
system design. The Web server can be any popular server
as long as it understands the custom HTTP request headers
(in Table 1) from an MMT-CMB. The MMT-CMB enforces
content-based caching for efficient bandwidth usage, and dy-
namically adjusts the video rate to cope with the congestion
in the last mile.

1The actual chunk name is calculated over ’payloadized’ mdat sequences.
In this way, (a) the middlebox reduces an undesirable delay since it can de-
liver each MFU promptly without waiting for the full MPU. (b) Payloadized
mdat sequences would fix the location of the hint samples, which would pro-
duce the same name even if those hint samples are stored in different loca-
tions at a storage.

Format Purpose
X-MPURange: N-M Request MPU IDs from Nth MPU to Mth MPU
X-MPURequest: N Request full content of Nth MPU
X-MPUHeaderRequest: N Request only metadata part of Nth MPU
X-HTMLRequest Request HTML file of Package
X-CIRequest Request CI file of Package

Table 1. MMT-CMB protocol overview

Server MMT-CMB Client

1.  Package request

5-1. MPU information request
5-2. Response with MPU ID list

7. Send MPUs
 with adaptation

6-1. Request MPU
6-2. Send requested MPUs

2. Relay content(package) request

3-2. Send CI file

4. Send CI file
using signal message

3-1. Request CI file

Parse CI file
& Request Asset

Compare MPU
with cached MPU

Store chunk &
Construct MPU

Fig. 3. MMT-CMB work flow: Dashed arrows are MMTP
and bold arrows are MMT-CMB protocol (HTTP)

The goal of the MMT-CMB is (a) to optimize the phys-
ical bandwidth usage in the path between the server and the
MMT-CMB and (b) to adapt the video rate to available band-
width per each client. For the former, the MMT-CMB fo-
cuses on content-based caching on the MPU delivery to in-
crease the effective bandwidth and to reduce the load of MMT
servers. An MMT-CMB fetches original MPUs (with the
highest video quality) from the Web server only if they are
a cache miss. The MMT-CMB fetches the highest quality
MPUs from the server, but adapts its video quality to the
network environments towards the clients. Our assumption
is that the path between the Web server and the MMT-CMB
has more bandwidth than that of the clients, but content-based
caching would minimize any redundant MPU transfers.

For serving the media to clients, we locate the MMT-
CMB close to the clients, and MMT-CMB can enforce a
fine-grained rate control over the client-side network environ-
ments. The MMT-CMB adjusts the quality of MPUs to the
available bandwidth, and fairly distributes the bandwidth to
competing clients. Then, the MMT-CMB delivers the MPUs
to the clients through MMTP. While the overall architecture
is similar to that of commercial CDNs [16], it is specilaized
for MMT media delivery.

3.3. Protocols for Caching Middlebox
We define the MMT-CMB protocol for delivering MMT me-
dia from a server to a MMT-CMB. It augments HTTP with
a few custom headers to exchange MPU requests, MPU IDs
(chunk IDs), and metadata for delivering MMT packages. Ta-
ble 1 shows the format and usage of custom headers that are

defined for content-based caching.
Figure 3 presents an overview of how the protocol works2.

First, in order to work as server, the MMT-CMB asks for a CI
file and an HTML file from the server. After parsing the CI
and HTML files, the MMT-CMB retrieves the name of the
asset and requests MPU IDs for the MPUs in the asset. On
receiving the MPU IDs from the server, the MMT-CMB de-
termines whether the chunk with the ID is cached at its cache
storage. In case of a cache hit, it requests the MPU metadata
consisting of non-mdat boxes (e.g, moof and moov boxes),
and reconstructs the MPU with the cached mbox data. On
a cache miss, the MMT-CMB requests the entire MPU and
store the MPU content (e.g., only the mdat part) in cache stor-
age along with its MPU ID. While MMT-CMB sends MPUs
to client, the client also informs the MMT-CMB of transmis-
sion information such an available bitrate or a drop ratio.

3.4. Adaptive Streaming of MMT in Caching Middlebox
MMT-CMB is located close to the clients and monitors the
congestion in the last mile which often suffers from band-
width bottleneck when multiple clients compete to link. With
network abstraction for media (NAM) feedback message in
MMT, MMT-CMB can be notified the available bandwidth
and loss ratio from the client. Moreover, MMT-CMB also can
utilize QoS information for media transmission from trans-
port characteristic (ADC) in MMT.

To eliminate buffering event in video playback, MMT-
CMB adjust the media with awareness of available bitrate and
video encoding rate by dropping MFUs in MPU. Dropped
MFUs are selected from end of MFU in MPU for reducing
decoding error. The rate-adapted MPUs are delivered through
MMTP with encoded bitrate speed and this delivery approach
eliminates OFF period which is pointed out the OFF periods
as the root cause of QoE problem [5, 6].

4. IMPLEMENTATION AND EVALUATION
We implement an MMT-CMB and an MMT server in 12K
lines of C code. Our evaluation shows (a) the caching effi-
ciency when serving the three identical video contents with
different names, and (b) fine-grained rate adaptation control
at the last mile. We use a machine with a quad core Intel
CPU (i7 2600) with hyper-threading on with 8GB of physical
memory as MMT-CMB.
Caching effectiveness of MMT-CMB First, to evaluate the
caching efficiency of an MMT-CMB, we prepare three MMT
packages that have different asset IDs but have the same con-
tent, encoded at the rate of 2,694 kbps. A client requests each
content sequentially for simulating two cases; (a) an aliased
content delivery, requested with a different URL but has the
same package and asset IDs and (b) a duplicated content with
a different binary due to different package and asset IDs.
Figure 4 shows that caching works well for the second and

2One can implement the same mechanism using custom web services
based on XML-RPC, JSON-RPC, RESTful API, etc.

0

5

10

15

20

25

0

500

1,000

1,500

2,000

2,500

3,000

0 100 200 300 400 500 600 700

Se
nt

 tr
af

fic
 (M

bp
s)

R
ec

ie
ve

d
tr

af
fic

 (K
bp

s)

Time (sec)

MMT-CMB to
client
Server to
MMT-CMB

Fig. 4. Measured traffic in MMT-CMB

0
500

1000
1500
2000
2500
3000
3500
4000

0 20 40 60 80 100 120 140 160

B
itr

at
e

(k
bp

s)

Time (sec)

Available bandwidth
MMT-CMB to client

Fig. 5. Adaptation in MMT-CMB

third requests. For the first request, we do see some fetching
from the server. One notable aspect is the client-side delivery
throughput, which is set slightly higher than the video bit rate.
This is because there is per-packet overhead in delivering the
contents over the network. For cached contents, the MMT-
CMB should get uncached metadata and MPU IDs from the
server. However, the amount of extra traffic is negligible, tak-
ing up only 0.64% of the video content with the benefit of
redundancy suppression.
Adaptation at the last mile With the same MMT packages,
we observe the behavior when the available bandwidth varies
over time. During video delivery, we change the link band-
width between the MMT-CMB and the client to 2 Mbps us-
ing DummyNet [17]. Figure 5 shows that the MMT-CMB
changes the sending rate with the rate-adapted media. That
is, the MMT-CMB gets notified of the reduced available band-
width from the client and adjusts the MPU video quality by
dropping some frames. We also observe that it reacts to the
link bandwidth change fast and accurately due to its loca-
tion. We fin that the client can watch the content without any
buffering during the experiments.

5. CONCLUSION
MMT is an emerging streaming technology that gains a mo-
mentum with broadcasting companies. Despite its strengths,
however, it suffers from a lack of scalability from a cen-
tralized server architecture. In this work, we alleviate the
problem by presenting a caching architecture for MMT. Our
caching system places a caching middlebox between the
client and the MMT server. The middelbox distributes the
load from the server by caching the MPUs by their content
names and adapts the video quality more accurately to the
varying client-side available bandwidth. We have shown the

overall architecture and its protocol, and implemented the
system. Our evaluation shows that our system works effec-
tively, meeting the dual-goals of the caching middlebox.

6. ACKNOWLEDGMENTS
This research was supported by Samsung Electronics (Project
name: Efficient Media Delivery Technology for Cloud-based
Media Delivery Systems, number: IO140305-01361-01).

7. REFERENCES

[1] Cisco, Inc., “Cisco Visual Networking Index: Forecast and Methodol-
ogy, 2012-2017,” 2012.

[2] “HTTP Live Streaming,” https://developer.apple.com/
streaming/.

[3] Iraj Sodagar, “The mpeg-dash standard for multimedia streaming over
the internet.,” IEEE Multimedia, , no. 18, pp. 62–67, 2011.

[4] “Smooth Streaming,” http://www.iis.net/downloads/
microsoft/smooth-streaming.

[5] Saamer Akhshabi, Lakshmi Anantakrishnan, Ali C Begen, and Con-
stantine Dovrolis, “What happens when http adaptive streaming play-
ers compete for bandwidth?,” in Proceedings of Network and Operat-
ing System Support on Digital Audio and Video Workshop (NOSSDAV),
2012.

[6] Junchen Jiang, Vyas Sekar, and Hui Zhang, “Improving fairness, ef-
ficiency, and stability in http-based adaptive video streaming with fes-
tive,” in Proceedings of the 8th international conference on Emerging
networking experiments and technologies (CoNEXT), 2012.

[7] Te-Yuan Huang, Nikhil Handigol, Brandon Heller, Nick McKeown,
and Ramesh Johari, “Confused, timid, and unstable: picking a video
streaming rate is hard,” in Proceedings of the 2012 ACM conference on
Internet measurement conference (IMC), 2012.

[8] Danny H Lee, Constantine Dovrolis, and Ali C Begen, “Caching in
http adaptive streaming: Friend or foe?,” in Proceedings of Network
and Operating System Support on Digital Audio and Video Workshop
(NOSSDAV). ACM, 2014.

[9] “ISO/IEC 23008-1:2014, Information technology - Coding of audiovi-
sual objects - Part 12: ISO base media file format,” Tech. Rep., 2012.

[10] “NHK MMT UHD system demo,” http://www.nhk.or.jp/strl/
english/aboutstrl1/r1-1-7.htm.

[11] “SKT MMT based True Realtime video streaming solu-
tion,” http://www.telecomlead.com/telecom-equipment/
sk-telecom-samsung-develop-real-time-mobile/
-streaming-technology-53422.

[12] Shinae Woo, Eunyoung Jeong, Shinjo Park, Jongmin Lee, Sunghwan
Ihm, and KyoungSoo Park, “Comparison of Caching Strategies in
Modern Cellular Backhaul Networks,” in Proceedings of the ACM In-
ternational Conference on Mobile Systems, Applications, and Services
(MobiSys), 2013.

[13] Xiao Wu, Alexander Hauptmann, and ChongWah Ngo, “Practical elim-
ination of near-duplicates from web video search,” in Proceedings of
the ACM international conference on Multimedia (MM), 2007.

[14] Michael Rabin, Fingerprinting by random polynomials, Center for
Research in Computing Techn., Aiken Computation Laboratory, Univ.,
1981.

[15] Athicha Muthitacharoen, Benjie Chen, and David Mazières, “A low-
bandwidth network file system,” in Proceedings of the ACM Sympo-
sium on Operating Systems Principles (SOSP), 2001.

[16] Akamai Technologies, Inc., ,” https://www.akamai.com/.

[17] Luigi Rizzo, “Dummynet: a simple approach to the evaluation of net-
work protocols,” ACM SIGCOMM Computer Communication Review
(CCR), vol. 27, no. 1, pp. 31–41, 1997.

