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Abstract
Network packet capture performs essential functions

in network management such as attack analysis, network
troubleshooting, and performance debugging. As the net-
work edge bandwidth exceeds 10 Gbps, the demand for
scalable packet capture and retrieval is rapidly increasing.
However, existing software-based packet capture systems
neither provide high performance nor support flow-level
indexing for fast query response. This would either pre-
vent important packets from being stored or make it too
slow to retrieve relevant flows.

In this paper, we present FloSIS, a highly scalable,
software-based flow storing and indexing system. Flo-
SIS is characterized as the following three aspects. First,
it exercises full parallelism in multiple CPU cores and
disks at all stages of packet processing. Second, it con-
structs two-stage flow-level indexes, which helps mini-
mize expensive disk access for user queries. It also stores
the packets in the same flow at a contiguous disk loca-
tion, which maximizes disk read throughput. Third, we
optimize storage usage by flow-level content deduplica-
tion at real time. Our evaluation shows that FloSIS on
a dual octa-core CPU machine with 24 HDDs achieves
30 Gbps of zero-drop performance with real traffic, con-
suming only 0.25% of the space for indexing.

1 Introduction
Network traffic capture plays a critical role in attack
forensics and troubleshooting of abnormal network be-
haviors. Network administrators often resort to packet
capture tools such as tcpdump [6], wireshark [8], netsniff-
ng [3] to dump all incoming packets and to analyze the
behaviors from multiple dimensions. These tools can
help pinpoint a problem in network configuration and per-
formance and even reconstruct the entire trace of an in-
trusion attempt by malicious hackers.

As the edge network bandwidth upgrades to beyond
10 Gbps, existing packet capture systems have exposed a

few fundamental limitations. First, they exhibit poor per-
formance in packet capture and dumping, sometimes un-
able to catch up with packet transmission rates in a high-
speed network. This is mainly because these tools do not
properly exploit the parallelism with multiple CPU cores
and disks, and the existing kernel is not optimized for
high packet rates. Second, most existing tools do not sup-
port indexing of stored packets. Lack of indexing would
incur a long delay to retrieve the content of interest since
the search performance would be limited by sequential
disk access throughput, often translating to hours of de-
lay in a multi-TB disk. Third, the huge traffic volume at
a high-speed link would significantly limit the monitor-
ing period. For example, it takes less than 17 hours to
fill up 24 disks of 3TB at the rate of 10 Gbps. For ex-
tended monitoring period, one must enhance the storage
efficiency by compressing the stored content.

Recent development of high-performance packet I/O
libraries [1, 22, 26, 28] has in part alleviated some of the
problems. For instance, n2disk10g [17] and tcpdump-
netmap [7] exploit a scalable packet I/O library to achieve
a packet capture performance of multi-10 Gbps. More-
over, n2disk10g allows parallel packet dumping to disk
and packet-level indexing for fast access. However, the
primary problem with these solutions is that they still
deal with packets instead of network flows. Working
with packets presents a few fundamental performance is-
sues. First, query processing would be inefficient. Most
content-level queries would inspect the packets in the
same TCP flow rather than those that belong to com-
pletely unrelated flows. Time-ordered packet dumping
would scatter the packets in the same flow across a disk.
Even with indexing, gathering all relevant packets for a
query could either increase disk seeks or waste disk band-
width from reading unrelated packets nearby the targets.
Second, per-packet indexing would be more expensive
than per-flow indexing. Per-packet indexing would not
only use more metadata disk space but also significantly
increase the search time.



In this paper, we present FloSIS (Flow-aware Stor-
age and Indexing System), a highly scalable software-
based network traffic capture system that supports effi-
cient flow-level indexing for fast query response. Flo-
SIS is characterized by three design choices. First, it
achieves high performance packet capture and disk writ-
ing by exercising full parallelism in computing resources
such as network cards, CPU cores, memory, and hard
disks. It adopts the PacketShader I/O Engine (PSIO) [22]
for scalable packet capture, and performs parallel disk
write for high-throughput flow dumping. Towards high
zero-drop performance, it strives to minimize the fluctu-
ation of packet processing latency. Second, FloSIS gen-
erates two-stage flow-level indexes in real time to reduce
the query response time. Our indexing utilizes Bloom fil-
ters [13] and sorted arrays to quickly reduce the search
space of a query. Also, it is designed to consume small
amount of memory while it allows flexible queries with
wildcards, ranges of connection tuples, and flow arrival
times. Third, FloSIS supports flow-level content dedupli-
cation in real time for storage savings. Even with dedu-
plication, the system preserves the packet arrival time and
packet-level headers to provide exact timing and size in-
formation. For an HTTP connection, FloSIS parses the
HTTP response header and body to maximize the hit rate
of deduplication for HTTP objects.

We find that our design choice brings enormous perfor-
mance benefits. On a server machine with dual octa-core
CPUs, four 10 Gbps network interfaces, and 24 SATA
disks, FloSIS achieves up to 30 Gbps for packet capture
and disk writing without packet drop. Its indexes take up
only 0.25% of the stored content while avoiding slow lin-
ear disk search and redundant disk access. On a machine
with 24 hard disks of 3 TB, this translates into 180 GB for
72 TB total disk space, which could be managed entirely
in memory or stored into solid state disks for fast random
access. Finally, FloSIS deduplicates 34.5% of the storage
space for 67 GB of a real traffic trace only with 256 MB
of extra memory consumption for a deduplication table.
In terms of performance, it achieves about 15 Gbps zero-
drop throughput with real-time flow deduplication.

We believe that our key techniques in producing high
scalability and high zero-drop performance are applicable
to other high-performance flow processing systems like
L7 protocol analyzers, intrusion detection systems, and
firewalls. We show how one should allocate various com-
puting resources for high performance scalability. Also,
our efforts for maintaining minimal processing variance
should be valuable in high-speed network environments
where packet transmission rates vary over time.

2 Design Goals and Overall Architecture

In this section, we highlight our system design goals and
describe overall system architecture of FloSIS.

2.1 Design Goals
(1) High scalability: A high-speed network traffic cap-
ture system should acquire tens of millions of packets per
second from multiple 10G network interfaces, and write
them to many hard disks without creating a hotspot. To
achieve high performance, the system requires a highly
scalable architecture that enhances the overall perfor-
mance by utilizing multiple CPU cores and hard disks
in parallel. Moreover, it should be easily configurable.

(2) High zero-drop performance: The system should
ensure high zero-drop performance. A peak zero-drop
performance refers to the maximum throughput that the
system can achieve without any packet drop. It is an im-
portant performance metric of a network traffic capture
system since we need to minimize packet drop for accu-
rate network monitoring and attack forensics. It typically
differs from the peak throughput that allows packet drop.
Even if the input traffic rate is much lower than the peak
throughput, a temporary spike of delay caused by block-
ing I/O calls or scheduling can incur packet drop regard-
less of the amount of available computation resources.

(3) Flow-level packet processing: Indexing plays a crit-
ical role in fast query response. Instead of packet-level
indexing [17, 19], we make an index per each flow. Flow-
level indexing significantly reduces the index space over-
head and improves disk access efficiency. However, it
requires managing the packets by their flows so that the
packets in the same flow are written to the same disk lo-
cation. While this incurs extra CPU and memory over-
heads, it also provides an opportunity to deduplicate the
flow content, making more efficient use of the storage.

(4) Flow-aware load balancing: For efficient flow pro-
cessing, the packets in the same flow need to be trans-
ferred to the same CPU core from the NICs while the
per-core workload should be balanced on a multicore sys-
tem. Otherwise, packets should be moved across the CPU
cores for flow management, which might cause severe
lock contention and degrade CPU cache efficiency.

2.2 Overall Architecture
The basic operation of FloSIS is simple. It captures the
network packets mirrored by one or a few switch ports,
manages them by their flows 1, and writes them to disk.
It also generates per-flow metadata and its associated in-
dex entries, and responds to user queries that find a set
of matching flows on disk. In case a flow content is re-
dundant, the system deduplicates the flow by having its
on-disk metadata point to a version that exists in a disk.

For scalable operation, FloSIS adopts a parallelized
pipelined architecture that effectively exploits the paral-
lelism in modern computing resources, and minimizes

1We mainly focus on TCP flows in this paper, and non-TCP packets
are written to disk as they arrive without flow-level indexing.
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Figure 1: The half of overall architecture and thread arrangement of FloSIS on a machine with 16 CPU cores, four 10G NIC ports,
24 HDDs, and 2 SSDs

the contention among them. It is multi-threaded with
three distinct thread types: engine, writing, and index-
ing threads. The engine thread is responsible for packet
acquisition from NICs, flow management, and index gen-
eration. It also coordinates flow and index writing to disk
with writing and indexing threads. The writing thread
shares the buffers for writing with an engine thread, and
periodically writes them onto a disk. All packets in the
same flow are written consecutively to disk unless they
are deduplicated. The indexing thread shares the flow
metadata and indexes with an engine thread, and sorts the
indexes when it gathers enough entries. Also, it writes the
metadata and indexes to disk for durability and helps with
resolving the queries by searching through the indexes.
We use hard disk drives (HDDs) for storing the flow
data and solid state drives (SSDs) for metadata and in-
dex information. Our system benefits from cost-effective
packet data dumping and prompt query response from
fast retrieval of flow metadata and indexes.

Figure 1 shows the mapping of FloSIS threads into a
server machine with 16 CPU cores, four 10G NIC ports,
and 24 HDDs and 2 SSDs, which we use as a reference
platform in this paper. The guiding principle in resource
mapping is to parallelize each thread type as much as
possible to maximize the throughput while minimizing
packet drop from resource contention. Every thread is
affinitized to a CPU core to avoid undesirable interfer-
ence from inter-core thread migration. We co-locate mul-
tiple writing threads with an engine thread on the same
CPU core since writing threads rarely consume CPU cy-
cles and mostly perform blocking disk operations. Since
a writing thread shares the buffers that its engine thread
fills in, it would benefit from shared CPU cache if it is
co-located with an engine thread. In contrast, an index-
ing thread runs on a different CPU core since it period-

ically executes CPU-intensive operations, which might
interfere with high-speed packet acquisition with engine
threads. Since indexing thread operations are not time-
critical, we can place multiple indexing threads on the
same CPU core. Each writing thread has its own disk
to benefit from sequential disk I/O without concurrent
access by other threads. However, SSDs are shared by
multiple indexing threads since they do not suffer from
performance degradation by concurrent random access.

3 High-speed Flow Dumping
In this section, we describe scalable packet capture and
flow dumping of FloSIS. FloSIS uses a fast user-level
packet capture library that exploits multiple CPU cores,
and performs direct I/O to bypass redundant memory
buffering at disk writing while minimizing CPU and
memory consumption for disk I/O.

3.1 High-speed Packet Acquisition
The first task of FloSIS is to read packets from NICs. It
is of significant importance to allocate enough resource
on the packet acquisition, because its performance serves
as an upper-bound of the achievable system throughput.
Thus, we allocate so many CPU cores as to read the pack-
ets from NICs at line rate. For scalable packet I/O, Flo-
SIS employs the PSIO library [22], which allows parallel
packet acquisition by flow-aware distribution of incom-
ing packets across available CPU cores. PSIO is known
to achieve a line rate regardless of packet size with batch
processing and efficient memory management [22]. Also,
we use symmetric receive-side scaling (S-RSS) [31] that
maps both upstream and downstream packets in the same
TCP connection to the same CPU core. S-RSS hashes the
4-tuple of a TCP packet to place the packets in the same
connection in the same RX queue inside a NIC. Each RX
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queue in a NIC is dedicated to one of the engine threads,
and all packets in the queue are processed exclusively
by the thread. This architecture eliminates the need of
inter-thread synchronization and achieves high scalabil-
ity without sharing any state across engine threads.

One may have concern that S-RSS may not distribute
the packet load evenly across multiple CPU cores. How-
ever, a recent study reveals that S-RSS effectively dis-
tributes real traffic at a 10 Gbps link almost evenly across
multiple CPU cores, by curbing the maximum load dif-
ference at 0.2% for a 16-core machine [31].

3.2 Flow-aware Packet Buffering
When packets are read from NIC RX queues, the engine
thread manages them by their flows. The engine thread
classifies the received packets into individual flows, and
each flow maintains its current TCP state as well as its
packet content. FloSIS keeps all packets in the same
TCP connection at a single conceptual buffer called flow
buffer. A flow buffer consists of three data buffers: packet
header, upstream and downstream buffers as shown in
Figure 2. The packet header buffer collects all packet
headers (e.g., Ethernet and TCP/IP headers) and their
timestamps in the order of their arrival. While FloSIS
focuses on flow-level indexing and querying, it also sup-
ports packet-level operations to provide information such
as packet retransmission, out-of-order packet delivery,
inter-packet delay, etc, where packet header buffers are
needed to reconstruct such information. The upstream
and downstream buffers maintain reassembled content of
TCP segments so that the user can check the entire mes-
sage at one disk seek. In case of an HTTP flow, the down-
stream buffer is further divided into response header and
body buffers. This header-body division adds efficiency
in deduplication, since the response header tends to differ
for the same object (see Section 5 for more details).

One challenge in maintaining the flow buffer is mem-
ory management of three data buffers. Since a flow
size is variable, one might be tempted to dynamically
(re)allocate the buffers. However, we find that dynamic
memory allocation often induces unpredictable delays,

which increases random packet drops at engine threads.
Instead, FloSIS uses user-level memory management
with pre-allocated memory pools of fixed-sized chunks.
For the flow buffer, one chunk is allocated initially for
each data buffer when a flow starts. If more memory is
needed, a new chunk is allocated but the new chunk is
linked to the previous one with doubly-linked pointers.
The flow management module has to follow the links to
write the data into right memory chunks. While manag-
ing non-contiguous memory chunks is more difficult, the
benefit of fixed-cost operations ensures a predictable per-
formance at high-speed packet processing.

When a TCP flow terminates, the engine thread gener-
ates a flow metadata consisting of the following informa-
tion: (i) start and end timestamps, (ii) source and desti-
nation 2 IP addresses and port numbers, and (iii) the lo-
cation and length of the flow data on disk. Then the data
in the flow buffer is moved to a large contiguous buffer
called w-buffer, and the flow buffer is recycled for other
flows. The flow data is also moved to w-buffer if its size
grows larger than a single w-buffer. The w-buffer serves
two purposes. First, it enables to have all flow data at a
contiguous location before disk writing, which ensures to
read all flow data with one disk seek. Second, it buffers
the data from multiple flows to maximize the sequential
write throughput of an HDD. It is the unit of disk writing,
where a larger size would lead to a higher disk through-
put while reducing the CPU usage. When the w-buffer
is filled up, the engine thread gives the ownership to its
writing thread, which writes to disk and recycles it.

For each flow, a flow data map is written prior to its
flow data in w-buffer. The flow data map contains an
array of disk locations and lengths of flow data buffers.
In most cases, three (or four) flow data buffers follow the
flow data map, but for a deduplicated buffer, the flow data
map points to an earlier version. If a flow consists of
multiple w-buffers, the flow data map is responsible for
keeping track of all data buffers in the same flow, allow-
ing flows of arbitrary size.

2Interpreted from the client side
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Figure 3: Disk writing throughput and CPU utilization

We comment that FloSIS avoids using buffered I/O,
because the file system cache would be of little use for
flow dumping and random disk access for user queries.
Worse yet, the file system cache behavior becomes unpre-
dictable when the cache buffer is full, which often leads
to a catastrophic result such as kernel thrashing. In con-
trast, direct I/O in FloSIS performs I/O operations by di-
rect DMA-mapping of user buffer to disk, and minimizes
the effect of file system cache.

To figure out what size of w-buffer is appropriate as a
good design choice in our reference platform, we run a
benchmark test with varying buffer sizes. Figure 3 shows
disk writing throughputs and CPU utilization of direct I/O
using the O DIRECT flag (Dwrite) and buffered I/O us-
ing fwrite() (Fwrite), where we compare the perfor-
mance of buffered I/O just to understand the maximum
disk performance. In these microbenchmarks, we run 24
threads on our platform, each of which occupies its own
HDD and calls write() (fwrite() in Fwrite) contin-
uously, and measure the aggregate throughputs and CPU
utilization. Not surprisingly, Fwrite shows good perfor-
mance regardless of the buffer size due to its data batch-
ing in the file system buffer. Since memory copying to
a file system write buffer is much faster than actual disk
I/O, the kernel always has enough data to feed to disk.
This allows Fwrite to achieve the maximum disk through-
put, whereas Dwrite achieves a similar performance only
at 128 KB or larger buffer sizes due to the absence of
kernel-level buffering. As expected, the CPU usage of
Dwrite decreases as the buffer size increases. In FloSIS,
we choose 512 KB as the size of w-buffer, which achieves
almost peak performance only with 10% CPU usage.

4 Flow-level Indexing & Query Processing
In this section, we explain the two-stage flow-level index-
ing of FloSIS and real-time index generation.

4.1 Two-stage Flow-level Indexing
FloSIS writes flow data to a file (called a dump file) on
each disk. When the current file size reaches a given

threshold (e.g., 1GB), FloSIS closes it and moves on to
the next file for flow data dumping. The reason for file
I/O instead of raw disk I/O is to allow other tools to ac-
cess the dumped content. For sequential disk I/O, we pre-
allocate the disk blocks contiguously in the files (e.g., us-
ing Linux’s fallocate()).

FloSIS handles flow data stored on each disk by two-
stage flow-level indexes as shown in Figure 4. It uses the
first-stage indexes to determine the files that contain the
queried flows (file indexing). If a dump file has relevant
flows, it filters the exact flows using the second-stage in-
dexes (flow indexing). The details are as follows.

File indexing: The first-stage indexing is file indexes.
Each dump file has in-memory file indexes that consist
of two timestamps and four Bloom filters. These indexes
are used to determine whether queried flows do not ex-
ist in the dump file, and the file can be passed. The two
timestamps record the arrival times of the first and the
last packet stored in the file. Each Bloom filter holds the
information about one of the 4-tuple of a flow. For ex-
ample, the source IP Bloom filter records all source IPs
of the flows stored in the dump file. Using the filters,
we can quickly figure out whether the dump file does not
have any flow with a queried IP (or a port number).

Even if a Bloom filter confirms a hit with a queried
IP address or a port number, there is still a small prob-
ability that it is a false positive. To achieve a tolerable
false positive rate, we need to adjust the size of a Bloom
filter and the number of hash functions, considering the
number of elements. Assuming that an average flow size
is 32 KB [31], we expect 32K flows in a dump file of
1 GB. A Bloom filter with 7 hash functions and 128 KB
(or 220 bits) of size, would reduce the false positive rate to
0.0011%, which should be small enough. This means that
the memory requirement for file indexes is about 1.5 GB
per 3 TB HDD or 36 GB for 24 HDDs.

Flow indexing: The second-stage is flow indexes. Flow
indexes of a dump file consist of all flow metadata of
those stored in the file and four sorted arrays. These are
used to retrieve the flow metadata entries that match a
user query. Using these entries, FloSIS reads the matched
flow data from the dump file.

Each sorted array contains one of the flow tuple val-
ues in increasing order. An element in the array consists
of a tuple value and a pointer to the flow metadata with
that value. For example, a sorted array for destination IP
has the entries with (a flow’s destination IP, a pointer to
the flow metadata) for all flows in the dump file, sorted
by the destination IPs. When a query determines a target
dump file in the first stage, sorted arrays are used to con-
firm if there are such flows that match the query. Using a
binary search, one can locate the flow metadata fast with
a specific tuple value in a query.
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In terms of the space overhead, assuming a dump file

contains 32K flows, four sorted arrays would take up
1 MB, and the array of 32-byte flow metadata would con-
sume another 1 MB. The total space overhead for flow
indexes for 24 HDDs of 3 TB would be 140 GB. Since
this might be too large to fit in memory, we store these
indexes on SSDs, and keep a fraction of them in memory
if they are necessary for query processing.

4.2 Real-time Index Generation
To create the two-stage flow-level indexes in real time,
FloSIS needs to produce the flow metadata, and updates
the Bloom filters and the sorted arrays, for each com-
pleted flow with a budget of a few CPU cycles. However,
sorting is a memory-intensive operation that consumes
many CPU cycles. To avoid the interference caused by
sorting, FloSIS separates the index creation in two steps.

In the first step, an engine thread creates the flow meta-
data with the 4-tuple values, start time, duration, and disk
location of the flow when the flow terminates. Then,
the engine thread computes Bloom filter hash values of
source and destination IP addresses and port numbers,
and updates the Bloom filters. Also, it adds an element
at the end of each sorted array and leaves the array un-
sorted. The new element has one of the 4-tuple values
and a pointer to the newly-created flow metadata. Sorting
of the arrays is postponed until the engine thread fills up
the dump file with flow data. Since sorting is skipped, the
engine thread creates an index just in a few CPU cycles.

When a dump file is filled up, the second step begins.
The engine thread sends an event to an indexing thread
to sort the arrays for the 4-tuple values. The indexing
thread sorts the arrays, and writes the flow metadata and
the sorted arrays into the SSD. While the indexing thread
performs CPU-intensive sorting, other threads working
on the same core could suffer from a lack of computation
cycles, which could affect the overall performance. To
prevent this contention, FloSIS runs the indexing threads
on dedicated CPU cores. We note that array sorting and
index writing happen once every few seconds since it
would take at least 5 seconds to fill a dump file of 1 GB,
assuming the disk write throughput is 200 MBps. Dedi-
cating a CPU core for each indexing thread would waste

CPU cycles, so we co-locate several indexing threads on
the same CPU core as shown in Figure 1.

4.3 Flow Query Processing
A FloSIS query consists of all or a part of six fields; a
period of time (a time range), source and destination IP
addresses and port numbers, and a packet-level condition
in the BPF syntax. Each field can be a singleton value or
a range of values using an IP prefix, a hyphen (-), or a
wildcard (‘*’). FloSIS searches the flows that satisfy ev-
ery condition in the query, i.e., the query fields are inter-
preted as conjunctive. Every query field is optional and it
is assumed to be any (’*’) in case it is missing in a query.

An example query looks like following.

./flowget -st 2015-1-1:0:0:0 -et
2015-1-2:0:0:0 -sip 10.1.2.3 -dip
128.142.33.1/24 -sp 20000-30000 -dp
80 -bpf tcp[tcpflags]&(tcp-syn) != 0

flowget is a query client program that accepts a user
query and sends it to the query front-end server of FloSIS.
The query searches the flows that overlap with the time
range of one day from January 1st in 2015, and the source
IP is 10.1.2.3 with ports between 20000 and 30000 with
any destination IPs in 128.142.33.1/24 with port 80. It
wants to see only the SYN packets of the matching flows.

When the query front-end server receives the user
query, it distributes the query to all indexing threads and
collects the results. Each indexing thread processes the
query independently using the two-staged indexes of the
dump files on their disks. The first step is ‘dump-file fil-
tering’ using the file indexes. In this step, the indexing
thread identifies which dump files might have matching
flows. The indexing thread first finds a set of dump files
whose timestamps overlap with the queried time range,
and then checks the Bloom filters to see if the dump file
might contain the flows with the requested fields. If a
query field is a range, the indexing thread assumes that
the corresponding Bloom filter returns a hit since check-
ing all possible values would be too costly.

The second step is ’flow filtering’ using flow indexes.
With the target dump files to look up, the indexing thread
performs a binary search on each sorted array to find the
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entries with the requested field. If the field is a range, it
first checks whether the array has any overlap with the
range, and a lookup for the closest entry to one end of
the range would find all matching entries. Assuming the
number of entries in an array is 32K, each binary search
would require at most 15 entry lookups. That is, 60 entry
lookups would be enough to find all matching flows in a
dump file in the worst case, which takes a few microsec-
onds on our platform. For each dump file, the indexing
thread takes an intersection of the results from the four
sorted arrays. After that, the indexing thread retrieves the
matching flow metadata entries, and reads the flow data
using the disk location in each flow metadata entry.

The last step in query processing is ‘packet filtering’.
The indexing thread runs BPF for detailed query condi-
tion on each packet header in the matching flows. A BPF
provides a user-friendly filtering syntax, and is widely
used for packet capture and filtering. While this step re-
quires sequential processing, it is applied to a much re-
duced set of packets compared to brute-force filtering. If
a BFP field is missing, then the last step is omitted and
all data is passed to the query front-end, which relays it
to the query client on a per-flow basis.

5 Flow-level Content Deduplication
It is well-known that the Internet traffic exhibits a sig-
nificant portion of redundancy in the transferred con-
tents [11, 31]. For example, a recent study reveals that
one can save up to 59% of the cellular traffic bandwidth
with simple network deduplication with 4KB fixed-sized
chunking [31]. Thus, if we apply flow content dedupli-
cation to FloSIS, we may expect a non-trivial saving on
storage space, which would help to extend the monitoring
period at a high-speed network.

In FloSIS, we choose to adopt “whole-flow dedupli-
cation,” which uses the entire flow data as a unit of re-
dundancy (i.e., a chunk). If the size of a flow exceeds
that of the w-buffer, we make each w-buffer for the flow
as a chunk. Whole-flow deduplication is a reasonable
design choice, given that 80 to 90% of the total redun-
dancy comes from serving the same or aliased HTTP ob-
jects [31], and that it consumes a smaller fraction of CPU
cycles compared to other alternatives with fine-grained
chunking [11]. Note that CPU cycles are important re-
sources in FloSIS that regularly runs CPU-intensive tasks
such as packet acquisition and index sorting.

For flow-level deduplication, an engine thread calcu-
lates the SHA-1 hash of the flow-assembled content in
each direction (or only the response body in case of an
HTTP transaction). CPU cycles for hash computation
are amortized over the packets in a flow as the hash is
partially updated on each packet arrival. This minimizes
the fluctuation of CPU usage, which produces more pre-
dictable latency in hash computation. Out-of-order pack-

ets are buffered until missing packets arrive, and the hash
is updated over the partially reassembled data. When a
flow finishes (or when the flow size exceeds the w-buffer
size), the SHA-1 hash is finalized. The hash is used as the
content name to look up in a global deduplication table
for cache hit. The deduplication table is a hash table that
stores previous content hashes and their disk locations. It
is shared by all engine threads to maximize the dedupli-
cation rate. When a lookup is a cache hit, the flow data
map would be made point to the location of the earlier
version when the flow is written to disk. If it is a cache
miss, the SHA-1 hash and its disk location is inserted to
the table.

We implement the deduplication table so as to min-
imize CPU usage and maximize the deduplication per-
formance. We use a per-entry access lock to minimize
the lock contention due to frequent accesses by multiple
engine threads. We also pre-allocate a fixed number of
table entries at initialization and use FIFO as the replace-
ment policy (known to perform as well as LRU in net-
work deduplication [31]). Each entry in the table is de-
signed to be as small as possible to maximize the number
of in-memory entries: 44 bytes per entry, 20 bytes SHA-1
hash, 8 bytes for disk location, and 16 bytes for doubly-
linked pointers. The size of the deduplication table (or
simply cache size) is a design parameter that trades off
memory usage and deduplication performance. However,
it is expected that the cache size does not have to be very
big, because it is known that even a small cache signif-
icantly helps and the performance improvement dimin-
ishes as the cache size increases (i.e., diminishing return)
[31, 11]. A recent study reveals that one can achieve 30
to 35% of deduplication rates with only 512 GB of con-
tent cache for a 10 Gbps cellular traffic link [31]. This
translates to 16 million entries (or 1 GB) in a dedupli-
cation table assuming 32KB of average flow size. We
understand that the actual numbers would vary in differ-
ent environments, but we believe that a few GB of table
entries should suffice in most cases.

6 Implementation
We implement FloSIS with 7,271 lines of C code that
include engine, writing, and indexing threads as well as a
query front-end server and a client. We mainly use Linux
kernel version 2.6.32-47 for development and testing, but
the code does not depend on the kernel version except for
the PSIO library that requires Linux kernel 2.6.3x due to
its driver code.

The number of engine, writing and indexing threads
and their CPU core mapping are configurable depend-
ing on the hardware configuration. Each thread is affini-
tized to a CPU core and we replicate the thread mapping
per each non-uniform memory access (NUMA) domain.
FloSIS ensures that the network cards deliver the packets
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only to the CPU cores in the same NUMA domain since
crossing NUMA domains is expensive [22].

Since high zero-drop performance is one of our de-
sign goals, we pay special attention to the implementation
that avoids unpredictable processing delay, whose key
techniques are summarized in what follows: First, Flo-
SIS limits maximum processing latency per each batch
of packets from a NIC. Normally, an engine thread reads
a batch of packets, processes them all, and moves on to
read the next batch. However, when the number of pack-
ets in a batch is too large, it handles only a fraction of
them at a time while leaving the rest in the buffer to min-
imize packet drop in a NIC. This technique is applied
to other implementations such as SHA-1 hash calcula-
tion and flow management. Second, FloSIS pins each
thread to a CPU core to avoid random scheduling de-
lay and to improve CPU cache utilization. Also, it pre-
allocates performance-critical memory chunks such as
data, flow, and write buffers, and core data structures like
flow metadata, indexes, flow and deduplication table en-
tries at initialization to avoid the run-time overhead of dy-
namic memory allocation. FloSIS efficiently recycles the
memory space, and dynamically allocates memory only
when there is no more available pre-allocated memory
space. The amount of pre-allocated memory is config-
urable, which in our prototype is set based on the recent
traffic measurement [31]. Third, FloSIS minimizes un-
predictable disk I/O delay as much as possible. We use
direct I/O with enough buffer size to saturate the disk I/O
capacity, and pre-allocate disk blocks in each file so that
they are accessed sequentially. This significantly reduces
the variance in disk I/O latency.

For evaluating FloSIS’s performance, we extend a net-
work workload generator initially developed for [23]. We
implement the workload generator to (i) produce syn-
thetic TCP packets with a random payload at a specified
rate up to 40 Gbps regardless of packet size, and (ii) re-
play a real traffic packet trace (in the pcap file format) at a
configurable replay speed. We ensure that the packets in
the same flow are forwarded to the same destination NIC
port in the order of their original record.

7 Evaluation

The goals of our evaluation are three folds. First, we eval-
uate if FloSIS provides a good performance 3 of packet-
and flow-level capture and disk dumping with synthetic
and real traffic. Second, we show how much reduction in
query response time FloSIS’s two-stage flow-level index-
ing brings over the existing state-of-the-art packet-level
indexing. Third, we evaluate the effectiveness of flow

3Unless specified otherwise, the throughput numbers include Ether-
net frame overhead (24 bytes) to reflect the actual line rate.
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Figure 5: Synthetic TCP packet dumping throughputs of Flo-
SIS, n2disk10g, and tcpdump at 40 Gbps input rate with various
packet sizes

content deduplication with a real traffic trace and mea-
sure the overhead.

7.1 Experiment Setup
We run FloSIS and other packet capture systems on our
reference server machine with dual Intel E5-2690 CPUs
(2.90 GHz, 16 cores in total), two dual-port Intel 10 Gbps
NICs with 82599 chipsets, 128 GB of RAM, 24 3TB
SATA HDDs of 7200 RPM, and 2 SSDs of 512 GB Sam-
sung 840 Pro. For workload generation, we run our
packet generator on a similar machine with the same
number of CPUs and NICs as the server. For synthetic
workload, the packet generator sends the packets of the
same size at a specified rate. For real traffic tests, the
packet generator replays 67.7 GBs of a packet trace ob-
tained from a large cellular ISP in South Korea [31]. This
trace represents a few minutes of real traffic at one of
10 Gbps cellular backhaul links, and has 89 million TCP
packets with 760 bytes of average packet size. The client
and server machines are directly connected by four 10G
cables since the traffic is either synthetically generated or
replayed. However, in practice, the live traffic should be
port-mirrored to the server via a switch.

7.2 Packet Capture & Dumping
We measure the performance of traffic capture and disk
dumping of FloSIS for synthetic and real traffic work-
loads and compare them with those of existing solutions.

7.2.1 Synthetic Packet Workload
We first evaluate whether FloSIS achieves a good perfor-
mance with packet capture and disk dumping regardless
of incoming packet size. We have the packet generator
transmit the packets of the same size at 40 Gbps, and
measure the disk writing performance of captured pack-
ets. To compare the performance of packet-level capture
and disk dumping with other tools, we disable other fea-
tures of FloSIS such as flow management, index genera-
tion and writing, and deduplication.
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Figure 6: Peak and zero-drop throughput of FloSIS and
n2disk10g with real traffic trace replay

We compare the performances with tcpdump [6],
tcpdump-netmap [7], and n2disk10g [17]. tcpdump is
a popular packet capture system based on the libpcap
library, but the libpcap library allows only one pro-
cess/thread for each network interface. Since our ma-
chine has four 10G interfaces, we run 4 tcpdump pro-
cesses and have each process write the captured pack-
ets to its dedicated HDD. On the other hand, tcpdump-
netmap uses the netmap packet I/O framework [28] to ac-
celerate the libpcap library performance. n2disk10g [17]
uses PF RING DNA [26] as scalable packet acquisition
library, and can be configured to write to multiple disks
in parallel. We select the parameters suggested by the
manual of n2disk10g [2] for the best behavior. For fair
comparison, we disable the indexing module for this test.

Figure 5 shows the throughputs 4 of the systems. Flo-
SIS achieves 35.8 to 36.5 Gbps regardless of packet size,
which is close to the peak aggregate disk writing perfor-
mance as shown in Figure 3. This implies that FloSIS’s
packet buffering works well to achieve a sequential disk
write performance. We observe that n2disk10g performs
as well (34.9 to 35.6 Gbps), which is not surprising since
its packet capture and parallel disk I/O is similar to that
of FloSIS. Unfortunately, tcpdump and tcpdump-netmap
perform poorly, achieving only 0.4 to 3.2 Gbps and 0.9
to 4.4 Gbps, respectively. While the netmap support im-
proves the performance of tcpdump, the inefficiency in
the libpcap library itself seems to limit the improvement.

7.2.2 Real Traffic Workload
We now measure the performance of handling the real
traffic by replaying the LTE packet trace at a high speed.
For this test, we enable flow management and indexing in
FloSIS but disable flow deduplication to focus on the per-
formance of flow processing. For comparison, we show
the performances of n2disk10g with and without packet-
level indexing. We also measure the peak zero-drop per-

4We do not include the Ethernet frame overhead in throughput cal-
culation in this test to focus on the performance of disk writing rather
than packet capturing.
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Figure 7: Query processing times over various number of
matching flows

formances of both systems to estimate the practical per-
formance for accurate monitoring.

As depicted in Figure 6, the peak performances of
FloSIS and n2disk10g with/without indexing are simi-
larly high as 36.4 Gbps, implying that disk writing band-
width is the primary bottleneck, as in the synthetic work-
load case. This, in turn, implies that the extra overhead
for flow management and two-stage flow index genera-
tion is small enough not to degrade the overall perfor-
mance. However, FloSIS achieves better than n2disk10g
in terms of zero-drop performance, 30 Gbps by FloSIS
and 20 Gbps by n2disk10g regardless of indexing. We
believe that our design choices such as minimizing the
contention by separating the resources between interfer-
ing tasks, and aggressive amortization of resource con-
sumption help produce more predictable processing de-
lays, despite extra tasks like flow management and index-
ing. We do not know the root cause for lower zero-drop
performance with n2disk10g since we do not have access
to the source code, but it seems to pay less attention to the
latency burstiness in packet capturing and disk dumping.

7.3 Query Processing
We evaluate the effectiveness of flow-level indexing of
FloSIS. For the experiments, we replay the LTE traffic
trace, and issue 10 queries to retrieve all flows between
two IP addresses randomly chosen by us. The number
of matching flows ranges from 119 to 21,300, and they
are scattered around the disks. We compare the query re-
sponse times with those of n2disk10g. The indexing of
n2disk10g similar to that of FloSIS in that it uses tuple-
based Bloom filters to skip the dump files, but it performs
linear search on per-packet indexes called packet digests.
Per-packet indexing not only incurs more space overhead
but also requires more disk seeks to read the packets scat-
tered around the disks.

Figure 7 compares the response times of 10 queries.
We find that FloSIS outperforms n2disk10g by a factor
of 2.2 to 4.9. As the number of flows increases, the per-
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Queries Q1 Q2 Q3 Q4
Bloom filter 100% 0.05% - -
Sorted array - 10.83% 100% 99.43%
Flow read - 89.12% - 0.57%
Latency 3.3ms 330.2ms 80.5s 82.2s

Response 0B 2.7KB 0B 2.7KB

Table 1: Query processing times of singleton and range queries
with/without disk access to read indexes and flow data

formance gap widens since n2disk10g suffers from more
disk activity to gather all data. Unfortunately, we could
not fill more data to examine the performance difference
further since n2disk10g that we have is an evaluation ver-
sion that runs for only a few minutes.

To investigate the FloSIS behavior with more flow
data, we disable deduplication in FloSIS and fill the LTE
trace repeatedly until we have 10 TBs of stored data.
During the data filling phase, we feed in a few random
flows that we retrieve in our queries. We use four types
of queries to evaluate the effectiveness of our indexing
structure. We use two singleton (Q1, Q2) and two range
queries (Q3, Q4) for the entire time period. One of the
two queries in each query type (Q1, Q3) looks for a flow
that does not exist on disk, while the other queries (Q2,
Q4) would return a small flow (2.7 KB) as a response.

Table 1 shows the response times for all queries. Q1
takes only 3.3 milliseconds (ms) since it would require
checking only the Bloom filters in memory. Q2 takes
more time (330.2 ms) since it has to read in the sorted ar-
rays and flow metadata for the matching dump file from
an SSD after cache hits with the Bloom filters. It also
needs to read in the flow data from an HDD. Q3 and Q4
take much longer, 80.5 and 82.2 seconds, respectively,
since FloSIS skips the Bloom filters for range queries,
and reads in sorted arrays and flow metadata for all dump
files. Since there are about 10,000 dump files for 10 TBs
of data, the total size of all sorted arrays and flow meta-
data would be 20 GB. Actually, we could optimize the
behavior further by reading the sorted arrays first, and
read the flow metadata only if the query is a hit with the
sorted arrays. Without indexing, it would require reading
all data from HDDs which could take at least a few hours
to resolve the queries.

7.4 Deduplication
We evaluate flow content deduplication with the real traf-
fic trace. Deduplication is the most CPU-intensive task
in FloSIS due to the overhead of real-time content hash-
ing. We see almost full CPU utilization when we enable
deduplication at a high traffic rate. While we expect to
improve the performance in a cost-effective manner with
SHA-1 computation offloading to off-chip GPUs [24], we
focus on the CPU-only performance here. We also mea-
sure the level of storage compression by deduplication as
we use more deduplication table entries.
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Figure 8: Deduplication rates over various numbers of dedu-
plication table entries

FloSIS achieves about 15 Gbps of the peak zero-
drop performance with deduplication. The performance
is almost halved from the peak zero-drop performance
without deduplication (in Figure 6), but its performance
reaches 75% of the peak zero-drop performance of
n2disk10g. Even if we amortize the latency of SHA-1
hashing over time, even a short spike of SHA-1 com-
putation delay induces random packet drop, which drags
the zero-drop performance. Nevertheless, we believe that
one can monitor a full 10 Gbps link with deduplication
without worrying about packet drop.

Finally, we estimate how many deduplication table en-
tries are needed for a good deduplication rate. This ques-
tion is difficult to answer given that we have only 67
GB of real traffic workload. For this workload, we draw
a graph that shows the deduplication rates over various
deduplication table size. Figure 8 presents the results
over the entire period of traffic replay at 13.5 Gbps. The
trend we find here is that (i) even a small cache works
very effectively: A table with only 64K entries (or just 4
MB of content cache on disk) provides about 14% dedu-
plication rate, (ii) it requires almost eight times more en-
tries to double the deduplication rate, (iii) once the entries
are filled up, the deduplication rate stabilizes over time.
We obtain 34.5% of deduplication rate with 4 million en-
tries, which is enough to suppress the actual redundancy
in the original data. We do note that our trace is too small
to draw any definitive conclusions, but we observe that
a much larger workload shares a few similarities as our
workload [31]. Given that 512 GB of content cache with
4KB chunks (or 16 million entries in the deduplication
table) gives 30 to 35% of deduplication rate at a busy 10
Gbps link, we believe that a few GB of entries would be
enough to achieve a good performance in practice.

8 Related Work
We briefly discuss the related work here. Due to a large
body of works, comprehensive coverage is difficult, so
we attempt to provide a summary of representative works.
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High-speed packet acquisition and writing: Scal-
able and fast packet capture heavily affects the per-
formance of network security monitoring systems such
as firewalls and intrusion detection/prevention systems
(IDS/IPS). High-end security systems typically adopt a
parallel packet acquisition architecture that exploit the
parallelism in modern CPUs and network cards. For ex-
ample, software-based IDSes such as SnortSP [4], Suri-
cata [5] and Para-Snort [14] deploy parallelized pipelin-
ing architectures suitable for a multi-core environment.
Gnort [20], MIDeA [30] and Kargus [23] adopt a sim-
ilar parallelized architecture for fast packet capture, but
use general-purpose GPUs to offload the heavy pattern
matching operations for extra performance improvement.
n2disk10g [17] is a recent high-speed packet capture and
storing system that adopts PF RING DNA for packet
acquisition, and uses direct disk I/O for scalable disk
throughput. FloSIS shares the parallel packet capture ar-
chitecture with these systems, but it goes beyond scalable
packet capture and shows how one should map hetero-
geneous tasks of different computation budget (e.g., en-
gine, writing, indexing threads) to computing resources
for high zero-drop performance.

Intelligent indexing for fast retrieval: It is of critical
importance to have an intelligent indexing structure for
fast query response. pcapIndex [19] uses compressed
bitmap indexes to index pcap files at off-line, and sup-
ports user queries with the BPF syntax. Hyperion [18]
presents a stream file system optimized for sequential
immutable streaming writes to store high-volume data
streams, and proposes a two-level index structure based
on Bloom filters. Gigascope [16] supports SQL-like
queries on a packet stream, however, without archiving
long-duration data. n2disk10g [17] supports per-packet
indexing based on the Bloom filter and a packet metadata
called packet digest. However, the per-packet indexing
structures are used only for rough filtering of the entire
data and it still requires linear search for query process-
ing, often causing a long delay. FloSIS adopts flow-level
indexing and query processing, which eliminates linear
disk search and minimizes disk access in query process-
ing. The required storage space for indexing is much
smaller than that of packet-level indexing.

Network Traffic Compression: There have been many
works on network traffic deduplication [9, 10, 11, 12, 29,
31]. These works show that typical Internet traffic has
significant content-level redundancy. In terms of dupli-
cate suppression, a smaller chunking unit and content-
based chunking algorithm like Rabin’s fingerprinting [27]
generally leads to a higher deduplication rate at the cost
of a larger computation overhead. To the best of our
knowledge, FloSIS is the first traffic capture system that
employs deduplication, and our choice of whole-flow

deduplication is reasonable given the trade-off of com-
putation overhead and the level of storage savings.

Cooke et al. present a multi-format storage that stores
detailed information for recent data, but maintains only
the summary of old data as time goes by [15]. Hori-
zon Extender [21] proposes Web traffic classification and
storing based on white-listing, considering the Web ser-
vice popularity. It mainly focuses on compressing stored
HTTP data for storage savings while minimizing the loss
of data required to find the evidence of data leakage.
Time Travel [25] stores only the first part of the large
flows considering the heavy-tailed nature of network traf-
fic. While these works reduce the storage requirement at
the cost of losing a fraction of the data, FloSIS focuses on
lossless storing of full flow data at a high-speed network
for accurate traffic monitoring. However, we believe a
hybrid approach is possible for further storage savings.

9 Conclusion
As the network edge bandwidth exceeds 10 Gbps, the
demand for scalable packet capture and retrieval, used
for attack analysis, network troubleshooting and perfor-
mance debugging, is rapidly increasing. However, exist-
ing software-based packet capture systems neither pro-
vide high performance nor support flow-level indexing
for fast query response. In this paper, we have proposed a
highly scalable, software-based flow storing and indexing
system, FloSIS, characterized by three features: exercis-
ing full parallelism, flow-aware processing for minimiz-
ing expensive disk access for user queries, and dedupli-
cation for efficient storage usage.

We have demonstrated that FloSIS achieves up to
30 Gbps of zero-drop performance without deduplica-
tion, and 15 Gbps with deduplication with real traffic
storing and indexing, at the indexing storage cost of only
0.25% of the stored data. The two-stage flow-level index-
ing of FloSIS completes searching and reading 2.7 KB
of flow data from 10 TB in 330.2 ms. Finally, our flow
content deduplication reduces 34.5% of storage space for
67 GB of the real traffic trace with 256 MB of additional
memory consumption.
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