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Research has shown that Multipath TCP (MPTCP) improves the quality of a TCP connection by exploiting
multiple paths, but its adoption in the wide area network is still fledgling. While MPTCP-TCP proxying is
often employed as a practical solution, the performance of a split-connection proxy is suboptimal – it wastes
CPU cycles on content relaying between two connections while it does not efficiently leverage multiple CPU
cores in packet processing.

We present FlexCP, a high-performance MPTCP-TCP proxy based on the following properties. First, FlexCP
operates by translating the two protocols on a packet level. This approach not only avoids the overhead
of flow reassembly and memory copying, but it greatly simplifies the implementation as the proxy stays
away from reliable data transfer, socket buffer management, and per-hop congestion/flow control. Second,
FlexCP maintains connection-to-core affinity for multiple subflows of the same MPTCP connection and its
corresponding TCP connection by leveraging SmartNIC. This enables a lock-free implementation for packet
processing, which significantly improves the performance. Our evaluation demonstrates that FlexCP achieves
281 Gbps of connection proxying on a single machine, outperforming existing proxies by up to 6.3× in terms
of throughput while it incurs little extra latency over direct TCP/MPTCP connections.
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1 INTRODUCTION
Multipath TCP (MPTCP) [15, 44] presents a great potential in improving the latency, throughput,
and resilience to packet loss of existing TCP connections by exploiting multiple network paths
between two end hosts. It is attractive not only to client devices that can leverage multi-homing
(e.g., Wi-Fi and cellular networks) [10, 39], but also to data center networks that can leverage
multiple internal paths [43]. In fact, the cellular network community has recently standardized the
Access Traffic Steering, Switching, and Splitting (ATSSS) feature [2] to embrace non-3GPP network
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Fig. 1. Comparison of MPTCP-TCP proxies with and without connection termination

access (e.g., Wi-Fi), and some cellular ISP has already adopted MPTCP for hybrid, multi-path
network access [24]. On the client side, MPTCP has been supported by Linux and iOS networking
stacks [4, 7].

Unfortunately, the MPTCP adoption by the end-to-end connections in wide area network (WAN)
is still very fledgling. According to the measurements from 2021 to 2022 [5], the protocol adoption
has increased rapidly in recent years, but the absolute number of MPTCP-capable servers is fairly
small – they report less than 20K MPTCP-capable servers in the entire IPv4/IPv6 space 1. This
is partly because old middleboxes filter out the MPTCP options [5] or more seriously, MPTCP-
unaware load balancers could malfunction, which disrupts the correct operation of a backend server
farm [49]. Nevertheless, the current status quo not only gives up the opportunity to exploit multiple
network paths but it also blocks the deployment of innovative new cellular network architectures
such as Cellbricks [30] that depends on MPTCP.
A more practical approach for wider deployment on the client side is MPTCP-TCP proxying

as seen in the deployment by KT [8] and Tessares [46]. This approach is in part backed by the
ubiquitous support for an MPTCP networking stack by modern smartphones [4, 11]. Protocol-level
proxying enables a cellular ISP to provide blanket multi-path support to their subscribers as part of
the ATSSS solution. Or one can deploy a reverse proxy that translates MPTCP to TCP (and vice
versa) before old middleboxes. However, as the wireless bandwidth in the cellular network has
substantially improved from 3G to LTE/5G, the performance bottleneck has gradually moved to
the connection proxying system in the cellular core network. In fact, we observe that MPTCP-TCP
proxying lowers the throughput of a persistent MPTCP connection by 3.1× to 3.4× over a direct
end-to-end connection, and up to 10.2× over a direct TCP connection in our experiments.

The root cause for suboptimal performance of the protocol-translating proxy lies in its connection-
terminating (or split-connection) architecture illustrated in Figure 1a. This design presents two
performance issues. First, a significant portion of CPU cycles are wasted on connection-level
proxying as demonstrated also in TCP-TCP proxying [17, 36]. Each connection segment (either
an MPTCP connection from a client to the proxy or a TCP connection from the proxy to a server)
needs to run reliable data transfer, buffer management, congestion and flow control, etc. Also,
the proxy can relay only the flow-reassembled content to the other connection, which incurs
frequent memory copies. While Linux’s splice() may help avoid frequent copies and crossings
between kernel and user levels, the overhead for operating two separate TCP/MPTCP connections
still remains. Second, efficient management of connection-to-core affinity is difficult for packet
processing in the existing MPTCP implementation. That is, multiple subflows that belong to the
same MPTCP connection can be mapped to different CPU cores as NIC-based receive-side scaling
(RSS) does not work for different four tuples of MPTCP subflows. The lack of connection-to-core
1A large fraction of them belong to Apple, Inc., as they have publicly announced the support for MPTCP [4].
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affinity requires frequent synchronizations through locking for processing received packets, which
leads to inefficient CPU cache usage, and it ultimately limits the scalability on multicore systems.
In this paper, we present FlexCP, a scalable MPTCP-TCP proxy on a multicore system for

multi-homed clients. FlexCP addresses the challenges described above as follows. First, FlexCP
relays the two logical connections of heterogeneous protocols with a single physical connection
that translates the headers on a packet level without connection termination (see Figure 1b). This
effectively avoids the TCP protocol conformance overhead of each segment and substantially
improves the performance. Second, FlexCP leverages the programmability of a modern network
interface card (NIC) to transparently maintain the connection-to-core affinity of the subflows in the
same MPTCP connection. The underlying SmartNIC carefully tracks the TCP option of SYN packets
to steer the packets from multiple MPTCP subflows of the same connection consistently to a single
CPU core. This ensures high processing scalability on a multicore system without locking. Third,
FlexCP presents a set of APIs through which the operator can easily configure different packet
scheduling policies. FlexCP currently supports load balancing, random, and smallest-RTT-first, but
one can implement an additional policy as well.

Our evaluation shows that FlexCP achieves 281 Gbps MPTCP-TCP proxying performance on a 24-
core machine with 4 x 100Gbps NICs, outperforming nginx by 3.3× to 6.3× in terms of throughput.
It also outperforms a high-performance user-level TCP-TCP proxy (epproxy) [36] by 1.8× to 3.5×
as it effectively avoids the overhead of connection termination. In terms of latency, FlexCP presents
almost similar response time to direct TCP/MPTCP connections while reducing the response times
of other TCP-TCP and MPTCP-TCP proxies by 1.5× to 3.1×.

2 BACKGROUND
This section presents the background of the MPTCP protocol and its performance implication with
connection proxying.

2.1 Overview of the MPTCP Protocol
MPTCP is an extension of the traditional TCP protocol that enhances its capabilities by allowing
the establishment of multiple TCP subflows within a single MPTCP-level socket [15]. It achieves
this while maintaining compatibility with existing TCP implementations. To create and manage
the subflows, MPTCP introduces additional control messages that incorporate new subtype TCP
options and a sequence mapping method. These additions provide the necessary mechanisms for
negotiating, establishing, and controlling multiple TCP subflows within an MPTCP connection.
Connection establishment.MPTCP follows the standard TCP three-way handshake for establish-
ing an initial connection. The client initiates theMPTCP negotiation by including theMP_CAPABLE
option in the SYN packet; if the server supports MPTCP, it responds with its own MP_CAPABLE
option in the SYN-ACK packet. This ensures that both endpoints are aware of the MPTCP capability.
Once the handshake is complete, any endpoint can advertise its additional IP addresses and ports
using the ADD_ADDR control message, so that it sends the MP_JOIN control message to join the
MPTCP connection as a subflow. Conversely, an endpoint can also terminate a specific IP address or
port from the MPTCP connection using the REMOVE_ADDR control message. To securely identify
the MPTCP connection that a new subflow joins, the initial connection establishment exchanges
per-endpoint 64-bit keys and the MP_JOIN option contains a 32-bit token which is a truncated
one-way hash of the key. To prevent a replay attack, the MP_JOIN option also authenticates each
endpoint with a nonce and hash-based message authentication code (HMAC).
Data sequence mapping. To run multiple independent TCP subflows under the same MPTCP-
level connection, MPTCP employs two types of sequence numbers (SNs): data sequence numbers
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(DSNs) and subflow sequence numbers (SSNs). Each subflow has its own SN space and maintains its
independent set of SNs. And thenMPTCP uses a Data Sequence Signal (DSS) option to map the SSNs
to the DSNs. This mapping enables MPTCP to manage the ordering of data packets transmitted
across different subflows. Note that the same DSNs can be mapped to by different subflows, hence
the same data can be sent on multiple subflows at the same time for resilience purposes.
Data splitting and assembling.When an MPTCP sender transmits data across multiple subflows,
theMPTCP packet scheduler is responsible for assigning each data packet to one (ormore) subflow(s).
The default scheduling policy employed by the current kernel implementation is known as Lowest-
RTT-First, where the subflow with the lowest RTT among the available subflows is selected to
transmit data packets until its TCP sending window (cwnd) is fully utilized. Once the window is
filled, the scheduler moves on to the next subflow with the second lowest RTT and continues the
transmission. On the receiver-side, both the MPTCP-level socket and the subflow-level socket(s)
maintain their own receive buffers and out-of-order buffers while each subflow performs reliable
transmission using SSNs, similar to a standard TCP flow. When data packets arrive in order by
the SSN, there are two possibilities for the treatment of these packets. If they are also in order in
terms of the DSN, MPTCP moves them directly to the receive buffer of the MPTCP-level socket for
delivery to the application. Otherwise, they are moved to the out-of-order buffer of the MPTCP
socket while waiting for the missing data sequence-level packets to be received from other subflows.
This mechanism enables reliable and efficient data delivery in MPTCP, even when there are missing
packets across different subflows.

2.2 Proxy Support for Multi-Connectivity
Mobile devices, or User Equipments (UEs), today are equipped with a network modem supporting
multiple generations of cellular communication (3G/4G/5G) and Wi-Fi technologies. Prior works
have explored the opportunities for utilizing heterogeneous access networks with complementary
coverage and capacity, and have shown the potential benefit in terms of better reliability, transmis-
sion efficiency, and throughput in real-world deployment cases [26, 28, 35, 42]. Mobile Network
Operators (MNOs) are also interested in integrating multiple accesses as they can save duplicate
capital expenditure (CapEx) when adopting a newer generation of radio access technologies. Several
approaches with different architectural designs have been studied to support seamless data trans-
mission across heterogeneous access networks. A traditional approach in the telecommunications
domain is to provide Dual Connectivity (DC) [3] between UEs and base stations. In this approach,
the user traffic delivered via multiple accesses are seamlessly distributed and aggregated at Packet
Data Convergence Protocol (PDCP) stacks running at UEs and base stations, without requiring
any modification on upper-layer protocol stacks and applications. DC-based traffic multiplexing,
however, is possible only when the target access network supports the radio protocol stack stan-
dardized by 3GPP while the need for integrating non-3GPP accesses is increasing. For example,
Wi-Fi APs not maintained by MNOs can be utilized for better indoor coverage, and MNOs also have
been working on converging a broadband wireline network with a cellular network for reducing
operational cost and enabling new services [16].
To embrace the heterogeneity in access network technologies, the 5G network is designed

with the "access-agnostic core" principle, where any type of access network, even an untrusted
3rd-party Wi-Fi network, can be integrated at the core network. In this architecture, handling
multi-connectivity is performed in the transport layer, and there are two options for it. The first
option is to support multi-connectivity in an end-to-end manner, for example, running an MPTCP
stack at servers and clients. This option mandates upgrading all the existing server applications to
support MPTCP, which makes it difficult to deploy all at once in practice. The second option is to
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Fig. 2. Performance comparison of an MPTCP-TCP proxy (nginx) with split-connection and direct MPTCP
or TCP connection (E2E)

place a proxy anchoring multiple connections inside the MNO’s network infrastructure. Recent
proposals on ATSSS follow this approach so that an MPTCP-TCP proxy can be collocated with a
User Plane Functionality (UPF) gateway in the core network. In this option, MNO can monitor the
network delivery status of each access network [2], and utilize the information to decide the traffic
transmission policy via multiple accesses. The ATSSS specification proposes supporting several
steering modes for distributing traffic between accesses in addition to the default "Lowest-RTT-
First" scheduling mode in the Linux kernel: (1) active-standby (switching to an available access
for reliability); (2) load balancing (splitting traffic across both accesses with a defined ratio); (3)
priority-based (steering all traffic to the high-priority access until being congested, and splitting to
low-priority access on congestion); (4) redundant (duplicating traffic to multiple accesses if they
are available) 2. The scheduling decision can be made at a service data flow (SDF) level where each
SDF consists of one or more IP packet flows, or at a session level (e.g., in case the network has no
strong steering requirement for a multi-access session). The scheduling decision is dependent on
whether the QoS flow has any guaranteed bit ratio, and can be updated during runtime based on
the rules provisioned by control plane (e.g., SMF in 5G) and congestion signal such as RTT and loss
rate measured in cellular networks 3.

2.3 MPTCP Proxying Overhead
An MPTCP-TCP proxy can be a promising solution for providing multi-connectivity across het-
erogeneous access networks, but MNOs are now responsible for proxying the entire multi-access
sessions within their networks. Traditional proxy models have adopted the split-connection design,
where data downloads are relayed from one connection over a wired network to another over a
mobile cellular network. Such a design often assumes that the cellular networks are the primary
bottleneck due to their lower bandwidth and higher latency compared to wired networks. However,
the performance bottlenecks are gradually shifting towards the proxies with the evolution of cellular
technologies to 5G, which offers significantly increased bandwidth, reaching tens of Gbps, and low
latency, often below 8 ms [14]. Therefore, it is now crucial for MNOs to consider the processing
overhead introduced by the MPTCP-TCP proxying model to fully leverage the benefits of MPTCP
while ensuring optimal performance.

To analyze the overhead of MPTCP-TCP proxying in the existing split-connection architecture,
we conduct a performance comparison between an MPTCP-TCP proxy and end-to-end (E2E) TCP
and MPTCP scenarios as shown in Figure 2. To push the bottleneck to the proxy machine, we use
2Recently introduced in 3GPP Rel-18 spec [1] to support Ultra-Reliable Low Latency Communications (URLLC)
3Performance Measurement Function (PMF) in a 5G core can be used to measure the metrics actively at UE or proxies [2].
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TCP SNs Subflow ID DSNs SSNs
(𝑧1 ∼ 𝑧2) 1 (𝑤1 ∼ 𝑤2) (𝑥1 ∼ 𝑥2)
(𝑧2 ∼ 𝑧3) 2 (𝑤2 ∼ 𝑤3) (𝑦1 ∼ 𝑦2)
(𝑧3 ∼ 𝑧4) 1 (𝑤3 ∼ 𝑤4) (𝑥2 ∼ 𝑥3)

(a) A mapping table for TCP SN ranges of the packets
sent from the server to MPTCP subflow DSN/SSN
ranges. The TCP server sent three packets whose ag-
gregate SNs range from 𝑧1 to 𝑧4, and the proxy for-
warded them through two different subflows whose
SSNs range from 𝑥1 to 𝑥3 and 𝑦1 to 𝑦2, respectively.
Figures (b) and (c) on the right side consult this table
for SN translation.

ProxyClient Server

TCP SN: 𝑧𝑧1~𝑧𝑧3SSN: 𝑥𝑥1~𝑥𝑥2

SSN: 𝑦𝑦1~𝑦𝑦2

(b) A retransmitted packet may need to be forwarded
into multiple different subflows

ProxyClient Server

DSN ACK: 𝑤𝑤1
SACK: 𝑥𝑥2~𝑥𝑥3

TCP ACK: 𝑧𝑧1
SACK: 𝑧𝑧3~𝑧𝑧4

(c) SACK packet translation from an MPTCP subflow
to the TCP connection

Fig. 3. Corner case examples in sequence number translation

400 Gbps links and generate 1,000 persistent connections per CPU core while each connection
downloads a distinct 1 MB content. The aggregate size of the downloaded contents exceeds 1 GB,
which simulates a memory-bound workload that avoids delivering the content directly from CPU
cache. We use nginx v1.24.0 as both the proxy and the server in our experiments. Details of machine
configurations are described in Section 5.

Figure 2 shows the results from which we make two interesting observations. First, the MPTCP-
TCP proxy demonstrates significantly lower throughput compared to the E2E scenarios – E2E
connections outperform MPTCP-TCP proxying by up to 3.4× in throughput. This suggests that
the split-connection proxying process introduces substantial overhead, impacting the overall data
transmission capacity. The main overhead for running two connections is attributed to memory
copies due to buffering, in-order data delivery after flow reassembly, per-segment congestion/flow
control, etc. Second, when comparing the E2E scenarios of MPTCP and TCP, we observe that
the throughput of MPTCP is less than half of TCP’s until E2E TCP saturates the link. This is
because MPTCP on Linux generally incurs higher processing overhead compared to standard
TCP as each subflow is implemented as an independent TCP connection with separate buffers. In
addition, MPTCP connection-level operations often require frequent memory copies and locking,
which involve multiple subflows while performing data splitting and assembling. However, the
performance gap between the TCP-TCP and MPTCP-TCP proxies is not considerably large. This
implies that the performance bottleneck of a proxy primarily originates from the nature of the
split-connection model itself, rather than inherent protocol overheads. These observations provide
valuable insights that allow exploration of an alternative proxying model, specifically, a splitless-
connection model that mimics the properties of E2E connections while still leveraging the benefits
of MPTCP deployment.

3 FLEXCP DESIGN
This section presents the design of FlexCP. Two key traits of the FlexCP design are (1) splitless,
packet-level connection proxying and (2) share-nothing parallel connection handling.

3.1 Challenges of Splitless Protocol Translation
The primary design choice of FlexCP is to perform protocol translation of MPTCP/TCP without
splitting the E2E connection at the transport layer. While this "splitless-connection architecture"
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avoids the performance overheads demonstrated in Section 2, it introduces a number of new
challenges mainly due to the intricacy of the MPTCP protocol [15] designed to ensure reliable data
transfer even with many concurrent subflows.

First, MPTCP-TCP proxying must maintain a per-connection state for consistency when mapping
the TCP SN space to the MPTCP SSN space 4. This is drastically different from packet-level SN
translation in TCP-TCP proxies [17, 36] that can operate completely in a stateless manner by
keeping the delta of the initial SNs of the two connections. For instance, when a TCP data packet is
forwarded by a proxy to one of the MPTCP subflows, any retransmission of it must go with the same
SSN range of the original packet if it is forwarded through the same MPTCP subflow. Also, a TCP
retransmission packet may have to be split into multiple smaller MPTCP packets so that each packet
can be forwarded into a distinct subflow as shown in Figure 3b. In terms of acknowledgements, a
data packet is ACKed not only at the connection level (DATA ACK), but also at the subflow level
(subflow ACK), so the system must maintain the mapping between them. Moreover, a selective ACK
(SACK) packet from the MPTCP side is expressed as SSN ranges that are independent of the DSN
space. So, the proxy should carefully handle it to avoid creating any inconsistency. In general, a
SACK packet arriving at a TCP endpoint does not necessarily indicate packet loss since the missing
data might have been sent through a different subflow, and the corresponding ACK simply has
not arrived yet. To efficiently translate packet-level SNs, one should come up with a scalable data
structure for storing and looking up the mapping of SN spaces. Note that FlexCP primarily employs
flow-level packet steering, but these problems can still occur when the proxy switches to another
subflow path in the middle of network transfer.

Second, in order to achieve multi-core scalability in the proxy system, it is desirable to handle the
proxied connections on the same CPU core. This helps avoid any potential lock contention when
accessing connection-level and subflow-level metadata for MPTCP-TCP proxied connections. The
de-facto standard scheme for server-side load balancing of multiple TCP connections is receive-side
scaling (RSS). RSS ensures parallel processing of TCP connections as all packets belonging to the
same connection are forwarded to the same CPU core. Furthermore, TCP connection-level proxies
can leverage symmetric RSS [48] to consistently map upstream and downstream packets of the
same TCP connection to the same CPU core as well. However, as illustrated in Figure 4, one cannot
blindly apply symmetric RSS to multiple MPTCP subflows as different subflows would have distinct
4-tuples, resulting in heterogeneous RSS hash values. Consequently, packets belonging to different
subflows of the same MPTCP connection would be steered to different CPU cores. We note that the
Linux kernel MPTCP stack utilizes locks to process multiple subflows of the same connection [7],
but this approach is not scalable. As of now, there is no proposed scheme to affinitize a set of
MPTCP subflows and their corresponding TCP connection to the same CPU core. We present our
solution to this challenge in Section 3.3.

3.2 Scalable Sequence Number Translation
FlexCP realizes MPTCP-TCP connection proxying through packet header translation. The common
operation of FlexCP is to receive a packet, translate its SNs and ACK/SACK numbers, add or remove
an MPTCP option, and forward the updated packet to the other endpoint. Internally, it handles
MPTCP-specific control packets (e.g., those with MP_JOIN or DATA_FIN) so that they are invisible
to the other TCP endpoint. All other TCP control logic such as reliable data transfer (including
packet retransmission), send/receive buffer management, congestion/flow control, error processing,

4The translation between MPTCP DSN and TCP SN can still be done in a stateless manner as one can leverage a delta in the
two SN spaces and a wrap-around counter to handle the difference in the SN space size (32-bit TCP SN vs. 64-bit MPTCP
DSN).
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etc., is handled by the connection endpoints. Essentially, FlexCP operates as a "smart" packet switch,
which simply forwards the received packets from one connection to the other without buffering
nor reassembling the received packets in order.
The key challenge lies in translating the SNs between MPTCP subflow and TCP packets. Each

subflow manages its own SN space, and an MPTCP connection may employ multiple subflows
concurrently. Consequently, mapping the SNs between each individual MPTCP subflow and the
corresponding TCP connection can be complex and non-trivial as discussed in Section 3.1. The
simplest solution to address this issue would be to maintain a data sequence number mapping
(DSM) across DSNs, SSNs and TCP SNs for each data packet. Then, the proxy needs to retain the
mapping information for each packet until the whole DSN range is ACKed by the other endpoint 5.
However, a naïve approach like a linear search in the list of the DSMs would not scale as the number
of data packets grows.
The D-tree data structure. We address the challenge by introducing our solution called D-tree, a
balanced binary search tree that maintains a set of unACKed DSMs as illustrated in Figure 5. Each
proxied MPTCP-TCP connection keeps two D-tree instances, one for MPTCP-to-TCP and the other
for TCP-to-MPTCP SN translation. The D-tree is based on the red-black (RB) tree structure, but
it is customized to support SN translation for an MPTCP-TCP proxy. The key of a node is a DSN
range, and the node itself contains the DSM information such as the subflow ID (indicating the
origin or the destination of the packet), the corresponding SSN range, and so forth. In addition,
the D-tree stores a timestamp associated with each packet so that the proxy can measure the RTT
on the subflow path. The D-tree supports efficient DSM lookup with a DSN as input; the node
whose key overlaps with the input number can be found in O(log 𝑛) time, where 𝑛 is the number
of nodes within the tree. The D-tree also supports efficient DSM lookup by an SSN as input and
it implements optimizations such as adjacent node merging and batched node removal, which is
explained below.
MPTCP-to-TCP packet translation. Upon the arrival of a data packet from an MPTCP subflow,
the proxy looks up the D-tree to find a node whose key includes the data SN range of the packet.
If a matching node is found, it indicates that the received packet is either a retransmission or a
redundant packet from another subflow for resilience [15]. In the latter, the proxy adds the subflow
ID and its SSN to the DSM node (i.e., Equiv-SSN (equivalent SSN) field) for correct SN translation
in the future. If no such node is found, it indicates that the received packet contains new data.
Then, the proxy creates a new DSM node using the information in the data sequence signal (DSS)
option and inserts it into the D-tree. In this case, the SN allocation in the translated TCP packet is
straightforward – the SN of the TCP packet is set to (𝐷𝑆𝑁𝑝𝑎𝑐𝑘𝑒𝑡 + 𝛿𝑖𝑛𝑖𝑡 ) where 𝐷𝑆𝑁𝑝𝑎𝑐𝑘𝑒𝑡 refers to
the DSN of the packet and 𝛿𝑖𝑛𝑖𝑡 is the difference between the initial TCP SN and the initial MPTCP
data SN (i.e., initial DSN). This is because the MPTCP DSN space is one-to-one mapped to the

5The proxy should keep track of the cumulatively ACKed SN as ACK packets may get lost during transmission.
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translated TCP SN space. The ACK number also needs to be translated correctly by looking up the
D-tree in the reverse direction. SACK range translation is tricky as SACK numbers are represented
in the individual SSN space, and the key of a D-tree node is a DSN range rather than an SSN range.
To address the problem, FlexCP maintains the following property for easy SN translation – if two
TCP data packets, 𝑝1 and 𝑝2, were forwarded through the same subflow and if 𝐷𝑆𝑁𝑝1 < 𝐷𝑆𝑁𝑝2,
then 𝑆𝑆𝑁𝑝1 < 𝑆𝑆𝑁𝑝2 (where 𝐷𝑆𝑁𝑝𝑥 and 𝑆𝑆𝑁𝑝𝑥 refer to DSN and SSN of 𝑝𝑥 , respectively). Each node
in the D-tree keeps the corresponding SSN range information, so one can run binary search to
efficiently find the node with the SSN. This enables fast SACK range translation into DSNs which
are translated into the TCP SNs.
TCP-to-MPTCP packet translation. Upon the arrival of a data packet from the TCP connection,
the proxy performs a lookup operation in the D-tree for the corresponding direction. (1) If a DSM
node already exists for the packet, it indicates that the packet is a retransmission. In this case, the
proxy translates the SN and forwards the packet through the same subflow as sent previously. If the
previous subflow path has become unavailable for some reason, the proxy sends the retransmission
through a different subflow path. This is a special case and the DSM information must be handled
separately from the D-tree as it would violate the property (e.g., if 𝐷𝑆𝑁𝑝1 < 𝐷𝑆𝑁𝑝2, then 𝑆𝑆𝑁𝑝1 <
𝑆𝑆𝑁𝑝2). Note that a retransmission packet may need to be split into multiple smaller packets that
are sent through different subflows. (2) If no node exists for the packet in the D-tree, it represents a
new data packet. Then, the proxy selects the appropriate subflow, creates and adds a new DSM
node to the D-tree, and forwards the packet with the correct DSS option. The proxy ensures that
𝑆𝑆𝑁𝑝𝑎𝑐𝑘𝑒𝑡 is monotonically increasing as 𝐷𝑆𝑁𝑝𝑎𝑐𝑘𝑒𝑡 in the same subflow grows in the D-tree. Even
if a new TCP data packet arrives out of order, the proxy still forwards it without buffering the
packet. Then, the proxy fills in the SN hole in the D-tree by inserting dummy DSM nodes with the
same subflow ID.
Batched DSM node removal.When an ACK packet is received, the proxy removes DSM nodes
from the D-tree that correspond to fully ACKed data SN ranges. However, it retains intermediate
nodes (i.e., non-leftmost nodes) that have been ACKed by SACKs as an endpoint receiver may
potentially renege ACKed SN range on these intermediate nodes and request retransmission
later [31]. Thus, node removal always involves removing the leftmost portion of the D-tree. To
minimize the overhead, the node removal process splits the D-tree using the ACKed SN as a pivot,
rather than deleting each node at a time, which would require tree rebalancing. During the split
operation, all nodes located on the left of the pivot are freed, while the nodes on the right side are
preserved as a new D-tree for the direction.
Optimizations. Each D-tree operation runs in O(log 𝑛), but rebalancing of the tree with a large
number of nodes can be often very costly. Therefore, it is desirable to keep 𝑛 small in the tree.
We enforce two optimizations during node insertion. First, the D-tree actively merges adjacent
nodes with the node being inserted if they can be combined. This represents a common case
in an uncongested path as data packets are normally forwarded in order without packet loss.
Second, the proxy leverages large receive offload (LRO) and generic receive offload (GRO) to merge
multiple contiguous data packets into a single packet. Then, the proxy utilizes TCP segmentation
offload (TSO) to make the packet size conform to the MTU size. The use of LRO/GRO/TSO allows
inserting or removing an MPTCP option without worrying about the MTU size. We also employ an
optimization for node removal. Splitting the D-tree can result in multiple tree concatenations to
combine the right side of the pivot into a single D-tree. However, each concatenation operation takes
O(log 𝑛) time, making frequent tree-splits costly. To address this, the proxy (1) batches multiple
ACKs and (2) enforces tree-splitting only once when the pivot goes to the right side of the root
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Fig. 6. SmartNIC-assisted MPTCP subflow-to-CPU-core affinity management. (a) The initial MPTCP connec-
tion (subflow1) is handled by NIC core 3 and the packets in subflow1 are forwarded to CID (CPU core ID) 2
by RSS. (b) Subflow2 joins the connection with token1, and the packets in it are handled by NIC core 7. Then,
NIC core 7 looks up the token-to-core table and maps subflow2 to CID 2 in its flow-to-core table.

node. While the latter may delay node removal, the increase in tree height due to this delay would
be at most 1, thus the benefit outweighs the cost.

3.3 Lock-free Connection Relaying on Multicore Systems
FlexCP leverages modern SmartNIC technology to steer all incoming packets from the same
MPTCP connection to the same CPU core, regardless of the subflow to which they belong. This
enables lock-free processing in connection proxying, which achieves high scalability on multicore
systems. Figure 6 illustrates our packet steering scheme that ensures connection-to-core affinity.
We configure the internal hardware switch on our SmartNIC (specifically, NVIDIA Bluefield-2)
such that packets originating from the client-side MPTCP connection go through the SmartNIC
Arm processors, while packets originating from the server side are directly delivered to the host
CPU cores. This configuration is based on the observation that client-side MPTCP connections
typically send a smaller number of packets (e.g., HTTP requests) to the server, while server-side
TCP connections send a much larger number of packets (e.g., HTTP responses) to the client.
Connection initiation. When a client initiates the first MPTCP subflow with a server, FlexCP
establishes a TCP connection with the server and starts relaying packets between the two connec-
tions (1). CPU core (as well as SmartNIC core) selection for all received packets is achieved through
symmetric RSS on the NIC (2). Upon receiving a SYN packet with MP_CAPABLE, the SmartNIC
simply forwards the packet to the corresponding CPU core on the host side using symmetric
RSS. The CPU core then sends two special command packets to the SmartNIC (3). First, it sends a
Subflow_Create command packet with an entry of <4 tuples of the subflow, CPU core ID> to the
same SmartNIC core that received the SYN packet, and then the SmartNIC core adds the entry to
its local flow-to-core table. Second, the CPU core sends a MPTCPConn_Create command packet to
SmartNIC core #0. The core #0 adds an entry of <MPTCP connection token, CPU core ID> to the
global/shared token-to-core table. All subsequent packets from the subflow are forwarded to the
same CPU core based on the flow-to-core table lookup (4 and 5). When the client creates another
MPTCP subflow within the same connection, the SYN packet with MP_JOIN may be mapped
to a different SmartNIC core due to the different source IP address/port (6). However, since the
SYN/MP_JOIN packet carries the MPTCP connection token, the SmartNIC core can look up the
token-to-core table to determine the CPU core responsible for the MPTCP connection (7). The
SmartNIC core then inserts a flow entry of <4 tuples of the new subflow, CPU core ID> to its
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own flow-to-core table (8), so that subsequent packets are forwarded to the same CPU core based
on the flow-to-core table lookup (9). Note that the flow-to-core affinity is not preserved across
SmartNIC cores, as packets from different subflows sent by the client may be received by different
SmartNIC cores. However, they are eventually forwarded to the same CPU core on the host side by
consulting the per-SmartNIC-core flow-to-core table. We also note that SmartNIC-based packet
steering can incur an overhead in case a client needs to upload a large content, but one can minimize
the overhead by offloading the flow forwarding rules in the flow-to-core table to NIC hardware
using features like ASAP2 [33] in NVIDIA NICs or Flow Director [21] in Intel NICs.
Subflow/Connection termination.When a subflow is terminated/deleted or encounters an error,
the CPU core responsible for the MPTCP connection sends a special command packet (Subflow_-
Close) with the four tuples of the subflow to the SmartNIC. Upon receiving this packet, the
SmartNIC removes the corresponding forwarding rule from the flow-to-core table. When the entire
MPTCP connection is being terminated, the CPU core sends a MPTCPConn_Close command packet
to SmartNIC core #0, along with the MPTCP connection token. The SmartNIC then removes the
corresponding entry from the token-to-core table.

3.4 Enforcing Flexible Policies at FlexCP
FlexCP enforces the scheduling policy for data packets in the downstream direction (i.e., TCP-to-
MPTCP direction). The policy for the upstream transfer is controlled by the client, and the proxy
simply forwards the packets to the server side. In the downstream direction, however, the proxy
must choose a subflow path for steering the data packets from the server side.
The granularity of traffic scheduling in FlexCP is each flow rather than an individual packet.

That is, FlexCP determines the subflow path for each TCP flow rather than spreading the TCP
packets in the same flow to multiple subflow paths concurrently. If the quality of the chosen
subflow path becomes poor or unavailable, the proxy chooses another subflow path for steering
the downstream TCP packets in a single flow. This is mainly because FlexCP adopts the splitless-
connection architecture that does not buffer nor reassemble the received packets from the server
side. In the splitless-connection architecture, one TCP sender performs the congestion/flow control
in the end-to-end path, so it is impossible to do congestion/flow control in the multiple subflows
concurrently.
However, we believe that the flow-level traffic steering can support or at least approximate

most of the ATSSS scheduling policies in 5G networks. FlexCP naturally supports "active-standby".
FlexCP does not fully support "smallest delay (or Lowest-RTT-First)" nor "priority-based" steering
as it cannot split the traffic to multiple paths at congestion. However, it can approximate both
scheduling modes and it can steer the flow into another available path when the priory path
becomes congested. Also, one may not literally achieve "Load balancing" on the packet level with
FlexCP, one can still realize the same effect with the flow granularity. To monitor the subflow path
quality in real time, FlexCP measures the path RTT by leveraging D-tree structure; each DSM
node in the D-tree holds a timestamp value when it is added, and the RTT for the subflow path is
computed when an ACK arrives. FlexCP ignores the cases where RTT calculation can be incorrect
due to node merging or a DATA_ACK packet that acknowledges DSN sent via the other subflow.
FlexCP also provides a method to track the packet loss rate per subflow by running a counter
for retransmitted bytes – this can be calculated during the lookup operation on the D-tree. Since
FlexCP is responsible for forwarding every data between two endpoints, it can provide an estimated
congestion window size of each subflow as well, in case the network operator wants to further
improve the scheduling algorithm. We leave the details of those schedulers in FlexCP to our future
work.
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To allow the users to configure the scheduling policies in a flexible manner, FlexCP provides an
interface with the following features for applications. First, FlexCP application can distinguish at
least individual MPTCP-TCP connections and possibly each subflows to be managed separately.
Second, FlexCP applications can (re)configure the path scheduling decision at runtime. We describe
some details of FlexCP API in the next section.

4 IMPLEMENTATION
FlexCP consists of host CPU and SmartNIC stacks that are both implemented as a DPDK [22]
application. The host CPU stack reuses the mTCP [23] stack code while adding 6K lines of C code
(LoC) for flow scheduling, header translation, and D-tree management. Appendix A briefly explains
the packet processing steps in the host stack. The SmartNIC stack includes 3K LoC for managing
flow-to-core and token-to-core tables for communication with the host CPU. In this section, we
provide the implementation detail of some salient features in FlexCP.
Developer APIs for a splitless-connection proxy Our prototype API introduces a proxy socket
to abstract a splitless MPTCP-TCP connection. An application creates a listening socket with
socket(), but it uses the SOCK_PROXY type for a proxy connection. Like the existing MPTCP
socket interface in the upstream kernel, accept() only exposes a new proxy socket that represents
an established proxying connection, instead of underlying subflows. However, an application
can manage individual MPTCP connections or subflows via setsockopt()/getsockopt() by
providing more specific parameters on the proxy socket. We also add getsockstat() to retrieve
the accounting information of a socket such as the amount of data that have been forwarded in each
direction. FlexCP exposes a knob to configure the forwarding policy and to monitor the connection
by extending those socket-level functions to retrieve per-subflow status including RTT and loss
ratio, and change the scheduling policy at runtime. At a high level, in ATSSS-enabled 5G networks,
SMF can insert the scheduling policy in the form of Multi-Access Rule (MAR). In the future, we
plan to update FlexCP to support an RPC interface to allow the agents to translate MAR and update
its path scheduler, which performs flow-level traffic steering.
MPTCP connection/subflow establishment. FlexCP handles MPTCP-specific control packets
on its own. For the initial MPTCP connection establishment, the proxy runs the 0-RTT TCP
convert protocol [9] to smoothly link an MPTCP to a TCP connection. For all subsequent subflow
establishments, the proxy handles them without forwarding the control packets to the server side.
The timestamp value for a proxy-sent SYN/ACK packet in response to SYN/MP_JOIN is internally
adjusted by caching the timestamps exchanged at the initial handshake.
Connection closure.MPTCP employs an extra DATA_FIN packet to terminate an MPTCP con-
nection while a TCP-level FIN is used only to terminate an individual subflow. So, FlexCP translates
MPTCP ACK for MPTCP DATA_FIN to TCP ACK for TCP FIN and vice versa while it ACKs any
FIN packets from a subflow without forwarding them. Also, FlexCP is responsible for closing all
remaining subflows at MPTCP connection teardown. To avoid handling the loss of a FIN packet,
we always have the endpoint send a FIN first so that the proxy piggybacks its own FIN on the ACK
packet. This allows the proxy to receive a retransmitted FIN again even if the packet is lost.
SmartNIC-to-CPU packet forwarding. We use the rte_flow library of DPDK to send and
receive a packet at a specific CPU core between host and SmartNIC. When a packet needs to be
delivered to some CPU core, SmartNIC marks the core ID into the ToS field of the IP header, and
sends it by the pre-configured rte_flow rule. Exploiting the ToS field can support up to 64 host
CPU cores as we use 6 bits due to the constraint of the field. On the host side, the application creates
two queues per CPU core – one for packet RX via RSS and the other for packet RX via rte_flow
rules.
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Fig. 7. Throughput comparison of MPTCP-TCP proxies over varying numbers of CPU cores

Zero-copy data forwarding. Packet forwarding without memory copy is an effective optimization
in the splitless-connection model. Instead of copying the packet data to a separate buffer, FlexCP
simply reuses the memory of a received packet to modify the header in place and then it sends
out the updated packet. To efficiently insert or remove an MPTCP option into (or out of) the TCP
header, FlexCP leverages NIC scatter-gather I/O –it enables hardware NIC to aggregate data chunks
in different memory locations into a continuous packet for transmission. FlexCP exploits the same
feature to split the data into multiple different packets in the zero-copy manner.

5 EVALUATION
We evaluate FlexCP to answer following questions. (1) Does FlexCP present better throughput and
delay performance compared with existing proxy solutions? Does the throughput scale well over
multiple CPU cores? (2) Does the flow-to-core affinity in FlexCP help improve the performance? (3)
Does FlexCP support load balancing and dynamically adapt to varying network path conditions?

5.1 Experiment Setup
Our evaluation testbed consists of one proxy server, two backend servers, and four client servers.
The proxy machine has an Intel Xeon Gold 6342 CPU @ 2.8GHz (24 cores) with 512GB DRAM.
It is equipped with two dual-port NVIDIA BlueField-2 100GbE SmartNICs connected to a 100G
switch (400 Gbps in total). Each server has a dual-port 100G ConnectX-6 NIC (200 Gbps in total per
machine), and each client has a 100 Gbps ConnectX-5 NIC. All servers has an Intel Xeon Gold 6326
CPU @ 2.90GHz (16 cores) with 256GB DRAM. Client machines have one of Intel Xeon Gold 6342
CPU @ 2.90GHz (24 cores), Intel Xeon CPU E5-2683 v4 @ 2.10GHz (16 cores), or AMD EPYC 7282
(16 cores) with 128GB or 64GB DRAM. We confirm that clients and back-end servers are not the
bottleneck in all experiments below.
We compare FlexCP with three baselines: nginx (version 1.25.1) and haproxy [20] (version

2.4.18, with splice()) for a MPTCP-TCP proxy, and epproxy [36], a TCP-TCP proxy on a scalable
user-level TCP stack called mTCP [23]. We use mptcpize [38] to have nginx, haproxy and client
applications create an MPTCP socket supported by the upstream kernel [7], running on Ubuntu
22.04 with Linux 6.1. Since mTCP does not support MPTCP sockets, epproxy is evaluated solely as
a TCP-TCP proxy. Both FlexCP and epproxy run on DPDK 21.11 [22]. The backend servers run
nginx as a Web server configured to accept only TCP connections.

5.2 Comparison of Throughputs
We evaluate the performance of FlexCP in terms of throughput and multicore scalability. In our
setup, a client initiates an MPTCP connection with two subflows, which are then relayed through a

Proc. ACM Netw., Vol. 1, No. CoNEXT3, Article 21. Publication date: December 2023.



21:14 Duckwoo Kim, et. al.

1.5
2.7

3.8

6.2

1.8
3.1

5.9
7.2

0.0

2.0

4.0

6.0

8.0

10.0

1 2 4 8

Th
ro

ug
hp

ut
 [G

bp
s]

Number of Arm Cores

nginx haproxy

Fig. 8. Performance of baseline
proxies on SmartNIC

82
117

152
183 194

93
136

191

253 281

0
50

100
150
200
250
300

2 4 8 16 24

Th
ro

ug
hp

ut
 [G

bp
s]

Number of Cores

FlexCP w/o flow-to-core affinity
FlexCP w/ flow-to-core affinity

Fig. 9. Performance of FlexCP w/
and w/o flow-to-core affinity

0

50

100

150

200

0 2 4 6 8 10

Th
ro

ug
hp

ut
 [G

bp
s]

Time [seconds]

Path 1 Path 2 Total

0

50

100

150

200

0 2 4 6 8 10

Path 2
becomes poorPath 2 available

Fig. 10. FlexCP throughputs over
dynamic network condition

single TCP connection by the proxy to a server. We have clients generate 256 concurrent MPTCP
connections per each CPU core employed by the proxy, and every single connection emulates an
active UE. Each MPTCP connection is persistent, and it repeatedly requests a 1 MB file at a time in
plaintext HTTP/1.1. FlexCP uses flow-level traffic steering which forwards TCP traffic to one of the
two MPTCP subflows at any given time while the Linux kernel uses the Lowest-RTT-First policy,
which is the only policy currently supported by the upstream kernel [7].

Figure 7 compares the throughputs over an increasing number of CPU cores of the proxy. The
performance of FlexCP scales well with multiple cores and it achieves 281 Gbps with 24 CPU cores.
FlexCP outperforms the nginx proxy by 3.2× to 6.3× and haproxy by 2.4× to 4.4×, respectively.
haproxy performs better than nginx as it employs the splice() system call to avoid expensive
memory copy. epproxy outperforms nginx and haproxy as it runs on a user-level TCP stack on
DPDK, but FlexCP performs better than epproxy by 1.8× to 3.5× thanks to its splitless-connection
architecture. Furthermore, it is notable that FlexCP achieves throughputs comparable to those of
E2E MPTCP shown in Figure 2, performing slightly better until 16 cores. This is because the E2E
MPTCP case uses more CPU cycles to manage multiple subflows on the server-side whereas FlexCP
works with more efficient TCP servers.

One might note that the performance comparison above is unfair as FlexCP uses both host CPU
and Arm processors on SmartNICs while baselines use only host CPU. However, we find that the
additional performance boost is minimal even if nginx or haproxy uses the Arm processors on
SmartNICs. Figure 8 shows the throughputs of the baseline proxies over a different number of
Arm cores, but none of them show more than 7.2 Gbps even if they use all eight Arm cores on
SmartNIC. Note that we configure both nginx and haproxy to operate as a TCP-TCP proxy as
the Linux kernel running on our Bluefield-2 SmartNIC does not currently support MPTCP [32]. In
summary, we confirm that the performance benefit of FlexCP is still significant even if baselines
use both host CPU and SmartNICs.

5.3 Benefit of Flow-to-core Affinity in FlexCP
We evaluate the benefit of SmartNIC-based flow-to-core affinity in FlexCP. We build a modified
version of FlexCP that does not use SmartNIC for MPTCP packet steering. Instead, this version
shares theMPTCP connection states with all CPU cores and accesses them viamutex locks, assuming
that the packets in the same MPTCP connection can be forwarded to different cores.
Figure 9 compares the performance of FlexCP with and without flow-to-core affinity with the

same evaluation setup as in Figure 7. We initially tried to configure each client to forward request
packets over alternating subflow paths of the MPTCP connection, but the MPTCP stack on our
Linux kernel does not support this – it tends to use only one of the subflow paths. Instead, we run
the same experiment as before but configure FlexCP to do packet-level traffic steering so that the
ACKs from the clients are delivered through different subflow paths. We observe that ensuring
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flow-to-core affinity improves the throughput by up to 45% as the number of CPU cores increases.
In fact, we find that even flow-level traffic steering shows a similar result where symmetric RSS
does not always work as clients use multiple subflow paths. We conclude that the performance
improvement is significant if FlexCP processes all packets in the same connection without locks.

5.4 Dynamic Switching of the Subflow Path
We evaluate if FlexCP can adapt to the dynamic change of the subflow path quality. We prepare two
distinct physical paths from the clients to FlexCP where each path has 100 Gbps network bandwidth.
We use 1024 MPTCP connections where each connection repeatedly downloads 1 MB file as before.
FlexCP runs on 16 CPU cores, and we configure its scheduling policy to "load balancing", which
selects the main subflow among available ones based on the number of main subflows per access 6.
Initially, all MPTCP connections use only one subflow path for about five seconds. Then, the second
path becomes available, and each MPTCP connection adds a new subflow on it. Then, after five
seconds, the second path exhibits a very high latency (i.e., we add 100ms of latency to the path
using Linux tc [27]).

Figure 10 shows the aggregate download throughput as well as the throughput of each path over
time. We observe that the aggregate throughput is near 100 Gbps for the first five seconds, and then
both paths are fully utilized for the next five seconds. When the second path becomes available,
we see that FlexCP steers the half of the flows to dynamically switch to the second subflow path
during the content download. Then, FlexCP detects a very high delay on the second path, so it
steers all flows to use the subflow on the first path again. This demonstrates that (1) flow-level
traffic steering can utilize the aggregate bandwidth in multiple network paths, and that (2) FlexCP
can dynamically steer the flows to avoid a network path whose quality becomes poor.

5.5 Comparison of Response Times
We evaluate the latency incurred by connection proxying. For this experiment, we measure the
response time of downloading a single file in a single TCP/MPCP connection. We run each experi-
ment for 10 times, and average the respond times. To understand the extra overhead by connection
proxying, we also compare with end-to-end TCP/MPTCP connections.
Figure 11 shows the results over different file sizes. We make a few observations here. First,

FlexCP incurs little extra latency comparable to the direct end-to-end connections. Surprisingly, it
often shows better response times than E2E MPTCP connections – we suspect that the server-side
MPTCP stack implementation on Linux is not fully optimized yet, thus proxying may provide better

6We plan to develop other schemes for load balancing in the future.
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performance for small contents. Second, FlexCP outperforms other baseline proxies in response
time – 1.7× to 3.1× for 1KB and 1.3× to 1.9× for 256KB. This confirms that packet-level protocol
translation also reduces the proxying delay over the split-connection architecture.

6 DISCUSSION & LIMITATIONS
Our splitless-connection design primarily addresses the processing overhead on the proxy side,
assuming that the network itself is not a performance bottleneck. However, there are certain
scenarios where the split-connection proxying model can still offer benefits while our architecture
imposes limitations. In this section, we describe the operating assumptions and architectural
limitations of FlexCP, and discuss a few extensions that leverage the advantages of the split-
connection model.
Operating assumptions and limitations. FlexCP is designed to bring performance benefits
when the proxy becomes a bottleneck in relaying the content over two separate connections. We
believe this is increasingly a common scenario in the near future as the bandwidth of a modern
cellular network grows rapidly and the high-bandwidth Wi-Fi networks have become widespread.
Another assumption is that clients are the consumer of the content, so the clients mostly download
the content through multiple subflow paths rather than uploading their own content. So, the
architecture of FlexCP is focused on efficiently handling the downstream traffic in the uncongested
subflow paths.

However, FlexCP may expose architectural limitations when the above assumptions do not hold.
One limitation is that FlexCP currently supports only flow-level traffic steering – it steers the
downstream packets in the same flow into the same subflow path at any given time. Since FlexCP
leaves all control logic to endpoints, it does not run congestion/flow control nor retransmit packets
in the middle. Under this architecture, there is only one endpoint sender (i.e., a TCP server), so
it cannot control the congestion in the multiple subflow paths concurrently. However, FlexCP
monitors the quality of an individual subflow path at runtime, so it can avoid a subflow path whose
quality becomes poor. We leave the impact of poor individual subflow(s) as future work. Also, the
proxy can still enforce load balancing of the multiple subflow paths on a flow level so that a client
can concurrently utilize the aggregate bandwidth if it employs multiple flows. In addition, FlexCP
can balance the subflow paths across multiple TCP server connections.

FlexCP performs packet-level protocol translation, so one might concern that adding an MPTCP
option to a full MTU-sized packet would exceed the MTU size limit. However, this is not a problem.
As optimizations, FlexCP employs LRO and GRO to coalesce the consecutive content into a large
packet and exploits TSO to segment the large packet into MTU-sized packets at NIC hardware.
When using TSO, one can add anMPTCP option that contains the SSN-to-DSNmapping information.
Then, all segmented packets would include the identical MPTCP option for the entire range, and
the receiver can translate SSNs into DSNs with the option. One corner case that rarely occurs is that
the original TCP packet header has a very long SACK option, so adding an MPTCP option makes
the header size exceed the maximum of 64 bytes. In this case, FlexCP drops the SACK option from
the header to fit the header size into the limit, which is suboptimal but fine in terms of correctness.
Fallback to split-connection mode. In scenarios where the network-side, particularly the access
network, becomes a bottleneck, split-connection proxying can offer improved performance by
downloading data from the servers and storing it in the proxy-side buffers. This allows the proxy to
perform data retransmissions directly, mitigating the impact of network congestion, thus enhancing
overall performance. Since several prior works have already addressed this issue based on the
split-connection architecture, our current design does not specifically handle this scenario, but
it is possible to fall back to a split-connection mode depending on the network path quality. For
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instance, base stations could inform the ATSSS servers to switch to a split-connection mode during
peak times when the access network experiences significant performance degradation. We leave an
exploration of this direction to future work.
Corner cases in SN translation. MPTCP allows retransmitting the data via another subflow
in addition to the original subflow. Exploiting this feature, when the proxy detects a failure of
one subflow, it can close it and select another subflow for retransmission. Then the proxy should
modify the DSM infomation as well as the Equiv-SSN field in the D-tree, which might break the
rule that a D-tree node with a larger DSN range should have a larger SSN range as well (note that a
newly retransmitted packet with a smaller DSN range needs to be sent with the largest SSN range).
However, our design still works even in this case because (1) we keep the Equiv-SSN field for this
case, and (2) the MPTCP side will send ACKs with DATA_ACKs regardless of the subflow ID, that
are simple to translate. So, even though the TCP side retransmits a packet, we can look up the
D-tree and successfully find the subflow for forwarding. Another corner case is when the proxy
wants to transmit every packet redundantly through multiple subflow paths. While we have not
implemented the forwarding mode in FlexCP yet, we believe our D-tree structure can support it
without any modification. However, our implementation currently does not handle retranmission
from a different MPTCP flow to a TCP connection, which is our future work.

7 RELATEDWORK
We discuss some of the key related works of the MPTCP protocol and L4/L7 protocol proxies.
MPTCPprotocol.Unlike standard TCP,MPTCP faces two algorithmic challenges: TCP-friendliness
and packet scheduling. The traditional congestion control algorithms allow MPTCP connections to
consume more bandwidth than regular TCP connections. This is because each MPTCP connection
comprises multiple subflows, with each subflow acting as an independent TCP flow. Consequently,
there is an unfairness issue in terms of network bandwidth allocation. To address this problem,
several algorithms have been proposed, known as coupled congestion control algorithms. The
fundamental idea behind these algorithms is to couple the information from all subflows when
determining the congestion window size for each subflow. This enables an MPTCP connection to
shift as much traffic as possible away from its most congested paths, which are likely to be occupied
by a larger number of regular TCP flows [47]. One such algorithm is the Linked-Increases Algorithm
(LIA) [47], which provides stability while fulfilling this design objective. The Opportunistic Linked-
Increases Algorithm (OLIA) [25], however, claims that LIA can be unfair towards regular TCP
flows, particularly when multiple MPTCP subflows and TCP flows coexist on the same path. In
response, OLIA introduces a Pareto-optimal algorithm that improves fairness even in such scenarios.
Additionally, the Balanced Linked Algorithm (Balia) [41] demonstrates that there is an inevitable
trade-off between TCP-friendliess and responsiveness to network dynamics. Balia strikes a suitable
balance between these two aspects.

While these coupled algorithms determine the sending rate of each subflow, the MPTCP packet
scheduler selects the most suitable subflow for transmission based on a specified policy, for example,
Lowest-RTT-First, as discussed in Section 2.1. In [40], the round-robin (RR) policy, where each
data packet is assigned one by one across available subflows, is also evaluated and compared with
the default policy. The evaluation reveals that the RR policy is generally inefficient due to its
lack of consideration for diverse path characteristics. Furthermore, it is reported that assigning
data packets to slower or lossy paths often results in a buffer blocking issue on the receiver-
side when the MPTCP-level buffer becomes full as a result of out-of-order packet arrivals [47].
This prevents other non-congested subflows from transmitting further, as the receiver reports
a zero advertisement window through ACKs, ultimately leading to performance degradation.
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The BLEST [13] and STMS [45] schedulers take the buffer-blocking condition into account in
their designs, so that network bandwidth of non-congested paths can be fully utilized. Lastly, the
Redundant [29] scheduler duplicates each data packet across all available subflows to address
end-to-end latency optimization at the expense of increased bandwidth consumption due to packet
duplication. As discussed in Section 6, these algorithms are applicable to MPTCP-TCP proxy models,
making them complementary to our work.
L4/L7 protocol proxies. L7 protocol proxying is a widely used technique for load balancing
among servers, leveraging application-level protocols like HTTPS. Since data relaying at the
application-layer incurs significant processing overhead, including data copies between user and
kernel space, the Linux community has introduced splice() that moves data directly from one
socket buffer to another inside the kernel since Linux 2.6.17 [6]. Several L4 load balancers then
have been proposed that perform packet-level header translation at the transport layer, akin to the
splice() technique [12, 18, 34, 37]. More recently, this approach has been extended to L7 proxies
in scenarios where the two endpoints are fixed [17, 36]. Zeng et.al. [49] ensures MPTCP-level
per-connection-consistency, by chaining load balancers so that any subflow eventually reaches the
correct backend, like Beamer [37].

We note that the majority of previous works for MPTCP-TCP proxy rely on the split-connection
architecture. [19] is the only work that explores splitless-connection proxying as far as we know.
However, it mainly focuses on the mobility feature of MPTCP as well as MPTCP-side connection
handover rather than scalable sequence number translation with tens of thousands of subflows. In
contrast, FlexCP ensures efficient packet forwarding by leveraging an efficient data structure for
scalable DSM management, which promises high performance at low latency.

8 CONCLUSION
MPTCP-TCP proxying is a practical approach to bridging the benefit of multiple paths to multi-
homed Internet users. This paper presents FlexCP, a scalable protocol-translation proxy design for
commodity servers. We have shown that one can proxy connections of heterogeneous protocols by
simple sequence number translation on a packet level. For scalable translation, FlexCP leverages
D-tree, an augmented RB-tree search tree that allows fast lookup, insertion, and deletion of DSM
nodes. Also, FlexCP exploits SmartNIC to ensure MPTCP/TCP connection-to-core affinity for
lockless packet processing on multicore systems. We observe that our design choices lead to high
performance – FlexCP achieves 281 Gbps proxying performance on a machine with a single CPU,
which outperforms the nginx proxy by up to 6.3x in throughput, and its response time is almost
comparable to that of a direct end-to-end MPTCP/TCP connection. The project homepage of FlexCP
is https://flexcp.kaist.edu/.
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(a) Main loop of FlexCP

Split packet through
multiple subflows

if necesssary

Lookup flow table

Parse MPTCP option

Select a subflow

Compute DSN

Compute TCP SN

Compute SSN

Update D-tree

Translate SACK

Update headers

Send ACKs to other subflows
if necessary

MPTCP→TCP TCP→MPTCP If retransmission?

If not retransmission?

(b) Detailed steps for "Translate header"

Fig. 12. Packet processing steps for an established connection in FlexCP. Steps requiring D-tree access are
written in boldface.

A PACKET PROCESSING IN FLEXCP
Figure 12 shows how FlexCP forwards incoming packets for an established connection. The main
loop of FlexCP is conceptually very simple as it operates by reacting to incoming packets and it does
not need to maintain any timers. The key operation is SN/ACK translation in the header as explained
in Section 3.2. We note that MPTCP proxies can be collocated with UPF in 5G networks, and session-
level operations can be chained together in prior to FlexCP operations. Our implementation assumes
that MPTCP path scheduler (or control plane of ATSSS proxy) runs asynchronously out of the
FlexCP main loop.
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