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Abstract
The Click modular router has been one of the

most popular software router platforms for rapid

prototyping and new protocol development. Unfor-

tunately, its internal architecture has not caught up

with recent hardware advancements, and the perfor-

mance remains sub-optimal in high-speed networks

despite its benefit of flexible module composition.

In this work, we identify the performance bottle-

necks of the existing Click router and extend it to

scale with modern computer systems. Our improve-

ments focus on both I/O and computation batching,

and include various optimizations for multi-core

systems and multi-queue network cards. We find

that these techniques improve the performance by

almost a factor of 10, and the maximum throughput

reaches 28 Gbps of minimum-sized IPv4 packet

forwarding speed on a single machine.

1 Introduction
The Click modular router [12] has been one of the

most popular software platforms that allow flexible

composition of packet-processing functionalities. It

has been used in a number of application prototypes

such as a router for a future Internet architecture [9],

redundant traffic elimination systems [2], a scalable

middlebox platform [17], and a cluster-based high-

performance software router [8], just to name a few.

The key strength of Click is its inherent extensibility

of functional components: a new feature can be

easily implemented by composing existing and new

modules.

While Click’s flexible design has satisfied many

of the demands for rapid prototyping, its internal

architecture has not caught up with recent hardware

advancements. In the processor side, multi-core

CPUs in a non-uniform memory access (NUMA)

architecture have become common. In the I/O

side, multi-queue network interface cards (NICs)

and high-speed interconnects have become com-

moditized, which promises high performance packet

processing. Yet, the existing Click router does not

utilize the modern advancements in hardware tech-

nology to its full potential, limiting its effectiveness

in the high-speed multi-10 Gbps networks.

There have been various approaches to improve

the performance of Click [3, 5, 8, 14, 18], but most

of them focus on parallelizing the packet processing

workloads on multicore systems. In this work,

we explore the benefit of batching in the Click

software router while preserving the modular archi-

tecture. More specifically, we carefully gauge the

performance improvements coming from packet I/O

batching and computation batching.

Packet I/O batching: the typical performance

bottleneck in any high-performance packet process-

ing system on commodity hardware lies in the

slow packet reception (RX) speed. The source

of the problem is mainly attributed to high per-

packet RX overheads, involving the inefficiency of
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the networking stack of a general-purpose OS [10].

With I/O batching, the per-packet RX overheads are

amortized by reducing the common tasks per each

packet and by eliminating the CPU consumption on

per-packet memory management.

Computation batching: factoring the common

computation (e.g., repetitive function calls) for a

group of packets should improve the performance,

especially for small packets. The idea is similar

to system call batching [19, 20], but we apply it

to user-level packet processing. One caveat is that

computation batching reduces the per-packet pro-

cessing flexibility, so the design should strike the

balance between the modular architecture and the

performance improvement.

For I/O batching, we can choose among several

open-source solutions, including PacketShader’s

packet I/O engine (psio) [10], netmap [15], and

PF ring [1]. They are designed with the same

underlying principle that batched access of packet

DMA buffers from user applications boosts the I/O

performance. Carefully-designed I/O batching not

only reduces frequent kernel-user switching, but

also eliminates memory allocation overheads (e.g.,

skbuf). netmap and psio both focus on efficient

user-level application support, where the former

provides a hardware-independent interface and the

latter is based on an extended Intel NIC driver.

However, we find that netmap does not perform as

much as we expected (explained in section 2.3), so

we use psio for this work. PF ring targets packet

filtering workloads instead of user-level packet I/O,

and bears a performance hit due to conformance to

existing kernel structures. While it supports direct

NIC access for high performance (called DNA), it

allows multiple 10 Gbps line speed only when it uses

the polling mode, which wastes CPU cycles.

For computation batching, we propose to con-

vert existing Click elements to be friendly to batch

processing. The simplest approach would be to

convert every element to take and process a batch

of packets. We demonstrate the performance im-

provement using a simple IPv4 router. We find

that computation batching gives as much as 75%

better performance with 64 B packets compared to

the naive integration of psio regarding multi-queue

support and I/O batching.

2 The Click Modular Router
2.1 Elements

The basic processing abstraction of Click is called

element [12]. Each element accepts a packet, applies

some operation, and directs the packet to another el-

ement. An element may have multiple input/output

ports that connect to other elements. There are

several types of elements: packet sources and sinks,

filters, and routers. Packet sources and sinks are

the I/O elements interacting with the NICs via OS

or a custom interface such as libpcap. Packet

filters validate the values of several fields in packet

contents (e.g., IP checksum and TTL) and drop

invalid ones. Packet routers direct each packet to

one of their destination elements depending on the

computation result. A typical router configuration

describes the linkage among these elements with

element-specific parameters.

2.2 Threading Model
The execution unit of the multithreaded Click

router is called a processing path [5]. A processing

path is a directed graph of connected elements that

are executed in sequence, which is disjoint to other

processing paths. There are two types of paths: push
and pull paths. A push processing path starts with

a packet source element, which generates a packet

and passes it down to other elements in the path

via function calls. A pull processing path starts

with a packet sink element, which chooses one of

its input ports and performs an upcall to retrieve a

packet from the path. Between the push and pull

paths, there is a queue element that stores packets

temporarily. Typical router pipelines consist of a

pair of push and pull processing paths. The main

loop of each thread repeatedly fetches and executes

a path from its private work queue, and the Click

router applies either adaptive or static schedulers to

manage those queues.

2.3 Performance
There have been many efforts to improve the per-

formance of Click. SMPClick [5] is the first multi-

threaded implementation of Click, as described in

the section 2.2. It distributes workloads to multiple

cores by scheduling different elements on different

cores. While the general idea is insightful, the

communication overhead between cores can under-
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(a) Linux driver and per-device I/O elements

psio

(b) psio driver and per-queue I/O elements

Figure 1: A comparison of the current and proposed packet I/O schemes for Click.

mine the benefit of pipelining on today’s processors

[6,7]. I/O batching for Click has brought substantial

performance boosts [3, 8]. RouteBricks introduces

multi-queue NIC support for the kernel version of

Click, showing significant performance improve-

ments [8]. There are other extreme approaches such

as using NetFPGA [13, 14] or Network Processors

[18] to accelerate the Click router.

The recently-added netmap support in Click per-

forms better than the existing pcap interface [15].

However, it still does not saturate a single 10 Gbps

link. The reported performance using the libpcap
wrapper atop netmap is about 2.8 Gbps with simple

packet forwarding with two 10 GbE cards [15].

This number is contrasted by the raw performance

of netmap, which is 10 Gbps in the same litera-

ture. Our measurements using the latest version of

netmap support show poor performances with less

than 1 Gbps with four 10 GbE cards doing packet

RX only, and we suspect that the current version

of netmap does not support multiple NIC queues

efficiently. Our work encourages the idea of per-

queue I/O elements [8] by showing that the above

mismatched performance can be improved. On top

of that, we add computation batching for further

performance improvement.

3 Design
We apply I/O and computation batching to the

Click modular router. We keep the essence of its de-

sign, the modular architecture and the configuration

language, while making it faster and more scalable.

3.1 Design Goals
We first introduce our high-level design goals:

• High performance. The extended Click modular

router should be able to sustain a high input rate

such as multiple-10 Gbps line rates.

• Multi-core scalability. We make Click scalable to

the number of available CPU cores. That is, the

performance should grow as the number of cores

increases.

• Element API and configuration compatibility. For

easy adoption of our design, users should not

have to change their elements and configurations.

The changes should be minimal and automated as

much as possible.

3.2 Our Approach
Drawing the insights from previous works on

high-speed software router designs [6, 10, 11], we

take the following approaches.

• Aggressive batch processing. Batching amortizes

the per-packet processing cost, and it is manda-

tory to saturate multiple high-speed NICs (e.g.,
10 Gbps, which corresponds to approximately

14.8 Mpps for 64B packets). So we apply batch-

ing everywhere possible—both for packet I/O and

computation.

• Native multi-queue NIC support. Modern net-

work cards have the ability to configure multiple

DMA buffers (queues) and distribute packets to

them by hashing packet headers as known as RSS

(receive-side scaling). This enables linear scaling

of the packet I/O performance with the number

of available cores. We adopt the per-device I/O

elements to exploit them.

• SMP (symmetric multiprocessing) model. Split-

ting the router configuration into multiple parts

and pipelining them using different cores incur

synchronization overheads and compulsory cache

misses on packet reads [6]. We clone the router
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configuration and make all cores to execute the

same configuration with different set of input

packets to prevent those problems.

• NUMA Awareness. NUMA is a commonly used

way to scale up the performance of a single ma-

chine, adding multiple physical processors with

their local memory. We take care of data and

thread placement in NUMA systems to reduce the

contention at CPU interconnections and memory

controllers [4].

3.3 Key Techniques
I/O Batching. We accomplish packet I/O batch-

ing by using psio. It passes the received packets in

large batches to the user-level Click. Our Click also

transmits the packets in large batches. By default,

individually-transmitted packets are queued at the

end of processing path up to the batch size. When

computation batching is applied, the group of pack-

ets processed together (called a pack) is immediately

sent out to NICs. Since the performance heavily

depends on the size of a pack (called a batch size) as

shown in Section 4, we use a few hundreds packets

as a batch size.

Computation Batching. We apply batching to

the intermediate elements between the packet source

and sink. The received pack is passed down to

the processing path, being handled by elements in

the middle. Each element takes it and applies

their operations by iterating over the packets in the

same pack. See Table 1 for details on how we

enforce batch processing with various elements with

different input/output port numbers. We do not have

to take into account push or pull port semantics since

we use only push processing paths for our Click

configurations.

Multi-queue NIC support. We exploit multi-

queue NICs by adopting the per-queue I/O ele-

ments. As shown in Figure 1, we add two el-

ements, FromQueue and ToQueue, which interact

with the individual NIC RX/TX queues via psio.

FromQueue operates as a packet source, generating

a group of packets by reading the associated RX

queue. ToQueue works as a packet sink, receiving

a pack and writing the packets to the TX queue. The

number of packets in a pack can be configured.

NUMA-aware Scheduling. Combining the

above techniques step by step, we finally intro-

# input/outputs How to apply batching?

1 / 1

Wrap the processing handler with

a for-loop to iterate over indi-

vidual packets in the input pack.

(e.g., Strip, CheckIPHeader)

1 / 2 (one is drop)

Wrap the processing handler with a

for-loop and mark dropped packets

in the pack. Later elements and

psio’s TX part will ignore them.

(e.g., DecIPTTL, IPGWOptions)

1 / n (router)

Prepare n empty packs. Wrap

the processing handler with

a for-loop, and place each

packet on the appropriate pack

according to its computation result.

(e.g., DirectIPLookup)

Table 1: Our element conversion method with the varying

number of input/output ports.

duce NUMA-aware scheduling. First, we replace

Click’s FromDevice and ToDevice elements with

FromQueue and ToQueue elements. Second, we

move all intermediate processing elements to the

push path from the pull path. This step removes

redundant packet queuing at the end of processing

path. Third, we set the number of the push process-

ing paths as the number of DMA queues, and set up

a static scheduling: one-to-one mapping of RX/TX

queues with CPU cores. For NUMA systems, we

need to separate RX queues for each node to ensure

that the packets reside in the local memory before

being moved to output TX queues. This allows at

most one NUMA crossing when the packets need to

be forward to TX queues in a different node.

4 Evaluation
4.1 Experiment Setup

We set up a machine with two quad-core Intel

Xeon X5550 (2.66 GHz) CPUs with 1333 MHz

12 GB DDR3 memory. There are two NUMA

nodes, one per CPU, and two dual-port Intel 82599

X520-DA2 10GbE cards, one per NUMA node.

The maximum possible throughput of this system

is 40 Gbps. We use packet generator running on a

separate machine with the same number of 10GbE

ports that can blast packets at a full line rate of

40 Gbps regardless of the packet size. The four ports

in these two machines are directly connected to the

corresponding ports.
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4.2 Implementation
The system uses the vanilla Linux kernel 2.6.36.4.

psio driver is configured to use four RX queues

(to affinitize to the cores of a CPU in the same

NUMA node) and eight TX queues per NIC port.

We have modified the codebase of Click 2.0.1 to

make it aware of NUMA thread affinity. Our Click

configuration specifies an IPv4 router based on an

example included in the Click source code, which

is extended to use all CPU cores and the psio API.

We hand-coded the batch-aware elements currently,

but we plan to implement automatic conversion of

existing elements into batch-aware elements and

single-core configurations into multi-core versions.

4.3 Preliminary Results
In our experiment, we measure the throughput

and latency by subjecting the system to a workload

of 64 B IPv4 packets coming in at a line rate.

Figure 2 shows the performance improvements as

we apply batching step by step.

The baseline is about 2-3 Gbps using the orig-

inal Click. Attaching psio to unmodified Click

shows 7 Gbps. With NUMA-aware thread affinity,

the throughput goes up to 16 Gbps, and computa-

tion batching (batch processing in intermediate ele-

ments) makes 28 Gbps, adding 75% improvement.

This is nearly a 10x improvement compared to the

original Click. The result is promising in that a

little modification to Click can vastly improve the

performance.

We find that the latency is also improved with our

implementation. When we apply only I/O batching

with psio, the latency fluctuates between 150 and

200μsec. However, with computation batching, the

latency becomes stable with a much lower delay of

20μsec. For underutilized situations with I/O batch-

ing only, we suspect that the latency increases or

fluctuates due to queuing at the end of the processing

path, but the fluctuation disappears when compu-

tation batching is applied. We also find that the

latency does not increase significantly as the batch

size increases. These results indicate that batching

has negligible negative impact to the latency and that

the overall performance improvement comes with

the decreased latency.

For small batch sizes (1 to 8), we observe that

computation batching incurs some overhead, but it
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Figure 2: Performance improvements with preliminary

implementation of our design. iob1: I/O batching only

ignoring NUMA thread affinity. iob2: I/O batching only.

iocb: I/O batching + computation batching.

gets hidden by the performance gain as the batch

size increases. From these results, we conclude that

the batch size should be larger than 128 to reach a

maximum performance on our system.

5 Future Work
5.1 Higher Performance

We plan to investigate the I/O performance im-

provement by introducing pipelining, which allows

overlapping of packet reading and processing. The

Click modular router currently uses polling to check

available input packets from the network. While

polling generally decreases the latency, it wastes

CPU cycles and increases power consumption even

when there are not enough packets to saturate the

line capacity. To overcome the shortcomings of

polling, we will integrate a hybrid mechanism such

as NAPI in Linux [16] by using psio and modifying

Click’s scheduling implementation. In addition, we

believe that I/O and processing pipelining can help

further. The current implementation of FromQueue
does not overlap the reading of the RX queues

and processing of already-received packets, since

FromQueue and other elements lie on the same pro-

cessing path and are executed in serial. To support

pipelining, we need an asynchronous I/O scheme

that maximizes the CPU utilization.

For higher packet processing throughputs, we

consider using many-core processors such as GPUs

in favor of larger batch sizes. We know packet

computation can be accelerated with GPUs from

existing works [10, 11], and we expect that paral-

lelization with many-core processors can curb the
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latency increase from batching. The question raised

here is: how much performance gain can we get

with Click by offloading some elements to GPUs?

It is challenging to make real-time decisions on

what elements to offload by observing the workload

changes inside the processing paths. The difference

of computation types that CPUs and GPUs do better

makes the scheduling problem more complicated.

5.2 Batch-Split Problem
Deep processing paths may contain many multi-

output elements. The pitfall is that different packets

are often directed to different destination elements

causing a split in a pack, which in turn reduces

the batching effect. We plan to analyze how much

it impacts the performance, and design an efficient

split/merge mechanism of packs to maintain suffi-

ciently large batch size. We expect that splitting a

pack into a few smaller batches (1 to 4) would not

be a problem if we have large enough RX batch

size, but we might need a different strategy for more

complex configurations.

6 Conclusion
In this work, we have explored the effect of

batching in the context of the Click software router.

We find that batch processing in both packet I/O

and computation is the key to high performance, and

that we should take care of NUMA architectures and

multi-queue network cards for multi-core scalability.

We have suggested a few simple approaches that

extend the existing configurations and elements of

Click to be friendly to batch processing. Our eval-

uation shows that we can improve the performance

of Click by almost an order of magnitude with I/O

and computation batching. We plan to continue this

work by automating the proposed techniques and

to explore possibilities to use many-core processors

like GPUs.
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