
First-Class Access For Developing-World
Environments

Vivek S. Pai
Department of Computer

Science
Princeton University

35 Olden Street
Princeton, NJ, USA

vivek@cs.princeton.edu

Anirudh Badam
Department of Computer

Science
Princeton University

35 Olden Street
Princeton, NJ, USA

abadam@cs.princeton.edu

Sunghwan Ihm
Department of Computer

Science
Princeton University

35 Olden Street
Princeton, NJ, USA

sihm@cs.princeton.edu
KyoungSoo Park

Department of Electrical
Engineering

KAIST
335 Gwahangno, Yuseong-gu
Daejeon, Republic of Korea

kyoungsoo@ee.kaist.ac.kr

ABSTRACT
Improvements in connectivity and the cost of laptops will
soon enable widely-available Internet access in parts of
the world where access ranged from rare to unavailable.
While such steps represent tremendous progress, we be-
lieve that the next barrier to adoption will be to convince
providers that the gap between“good enough”access and
first-class access, while quite large, is possible to bridge.
This paper presents our views for the creation of a net-
working software stack tailored toward developing-world
usage. With this stack, we believe that developing-world
users will have a participatory Internet experience, sim-
ilar to that of users in the US and Europe. The stack
is also geared toward a low resource footprint, making
it deployable in cost-sensitive environments. We have
completed some portions of the stack, and believe that
the total system represents a three to five year effort.

Categories and Subject Descriptors
C.2.2 [Network Architecture and Design]: Applica-
tions; C.2.4 [Distributed Systems]: Client/server

General Terms
Design, Experimentation, Performance

Keywords
Web Caching, WAN Acceleration, Developing Region

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CFI ’10 June 16–18, 2010, Seoul, Korea.
Copyright 2010 ACM x-xxxxx-xx-x/xx/xx ...$10.00.

1. INTRODUCTION
While the gap between the “haves” and “have-nots”

in Internet access is wide, the gap between the “haves”
and the “almost-haves” may not be much better. As
the first world moves toward user-generated content, so-
cial networking, blogs, comment-driven sites, and more
participation, having anything less than full access to
the Internet will degrade the Internet user experience.
While many people believe that read-only offline access
to the Internet is “good enough”, we believe that this
approach will hinder developing-world users from shar-
ing information not only with the developed world, but
also with each other, which appears to be a largely un-
addressed desire [21]. In the longer term, we also believe
that offline-only access will fail to spur the kind of Inter-
net growth seen in the first world.

While being a second-class Internet citizen is no doubt
better than being excluded completely, a number of tech-
nological advances may soon render the choice between
first-class and second-class a false dichotomy. Low-cost
laptops can bring personal computing to large numbers
of people [11, 13]. Long-range wireless can bring connec-
tivity where no connectivity existed [16]. Large-capacity
low-cost disks can provide bulk storage that transforms
how developers think of data retention. Solid-state disks
can boost the performance of out-of-core applications.
Current low-cost laptops combined with USB-attached
hard drives can provide this level of hardware for $400
USD per unit, and this cost may drop over time.

Our focus, at a high level, is to use these technologies
to narrow the gap between the usage experiences of the
developed world and the developing world. This com-
bination will likely mean that our focus will be on the
growing urban middle class and the upper-middle class in
particular, but even this target audience is sizable – if we
assume that one-quarter of India’s and China’s popula-
tion falls into this category, the number of users exceeds

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 50 100 150 200 250 300

G
ig

ab
yt

es
/D

ol
la

r

Performance (req/sec/disk)

Open Source
Commercial
HashCache

Figure 1: Hardware cost/performance for Hash-
Cache variants and other proxies. These figures
include the cost of the machine and memory
needed to achieve the given performance level.
The four HashCache values represent different
configurations.

the total population of the United States. We target this
audience based on the observation that even if $400 USD
is a large value in local currency, many middle-class par-
ents in these countries view it as an investment in their
children’s education. If such technology can provide a
usage experience similar to that of the developed world,
it also provides self-empowerment rather than charity,
with a family laptop seen as an aspirational item, akin
to a television, scooter, or car.

We also view targeting the urban middle class as a
means of helping build local ecosystems. Online access
can more easily drive advertising and advertising-based
purchases, both of which subsidize the cost of developing
and delivering content. As more people use the online In-
ternet, the fixed costs of traffic delivery are spread across
more users, lowering the cost of delivery, which can then
generate more demand from more users. Commercial-
ization of the Internet in the US has generated so much
volume that the researchers who originally used the In-
ternet can now buy bandwidth and access much more
cheaply than prior to commercialization. We hope that
lowering the cost of online access in the developing world
can generate a similar effect.

2. A DEVELOPING WORLD STACK
To achieve these goals in a way that best exploits our

backgrounds, we intend to focus our efforts on a net-
working software stack tailored toward developing-world
usage. The main goals of this stack will be focused
on improving the perceived bandwidth and latency of
Web applications by localizing activity as much as pos-
sible, and moving activity to where it can be most ef-
ficiently served. The components of our network stack
include: a static Web cache, a WAN accelerator, band-
width shifting, prefetching, snooping, off-line access, and
local search.

 0

 1

 2

 3

 4

 5

 0 20 40 60 80 100

T
hr

ou
hg

pu
t (

M
bp

s)

Compression (%)

NONE
 MAX-COMP

MAX-BW
PEER

Figure 2: Compression/performance tradeoffs for
our WAN accelerator. With only one machine
and a single disk, the system is disk-bound at its
highest compression rate. When higher through-
put is needed, the compression rate can be de-
creased, or other machines can be used as peers
to increase the aggregate disk performance.

2.1 Caching
At the heart of our networking stack is a caching stor-

age system called HashCache [3], which enables terabyte-
sized caches to be shared among applications, while pro-
viding selectable trade-offs between RAM consumption
and performance. In its lowest-performance mode, Hash-
Cache requires no main-memory indexing. From a devel-
oper’s standpoint, HashCache coupled with large disks
provides a practically-infinite cache store at low cost.
Assuming connectivity of one megabit per second, a one-
terabyte disk is sufficient to store all communication for
three months. A low-overhead cache system combined
with this kind of storage capacity frees the developer
from having to wonder if some data should be stored, or
whether prefetching will pollute the cache – if the least-
recently used data on disk is three months old, eviction
is not an issue. The HashCache Web Proxy provides a
standards-compliant cache for static content.

A comparison of HashCache configurations versus other
proxies is shown in Figure 1 on the Polygraph bench-
mark [8]. In its lowest-performance mode, HashCache
performs comparably to Squid (an open source proxy [20])
while using a small fraction of the resources. In practical
terms, HashCache can run on a netbook while compa-
rable systems need dedicated server-class machines. In
its highest-performance mode, HashCache compares fa-
vorably with high-end commercial systems, though the
cost-performance difference narrows.

2.2 WAN Acceleration
On top of HashCache, we layer Wanax, a WAN ac-

celerator (network packet cache) designed for disks with
large capacities but low seek rates [10]. By using Hash-
Cache’s indexing, it can operate with a very low memory
footprint, and the two systems can comfortably share
the hardware of a low-end laptop (256MB RAM) with

a USB-attached 1TB drive. Commercial WAN acceler-
ators often advertise the fact that they do not store re-
dundant content as a feature, since all content must be
indexed (presumably in RAM). In contrast, with Hash-
Cache eliminating the RAM pressure from indexing, stor-
ing data redundantly on disk can reduce the number of
seeks needed. Wanax also provides a peering protocol,
allowing content to be fetched from closer peers when
possible.

The benefits of this design are shown in Figure 2,
where the bandwidth and compression rate are shown for
three different configurations. The first (MAX-COMP) is the
maximum compression configuration, which requires the
most disk accesses. The second (MAX-BW) enables intelli-
gent load shedding, which can trade a lower compression
rate for a higher bandwidth when the wide-area link is
available. The third configuration (PEER) is with mul-
tiple peers in the same region, where high compression
and high bandwidth are achieved.

For higher-performance environments, HashCache can
use a different indexing scheme, which requires a larger
RAM footprint. We intend to use SSDs in these environ-
ments, since current low-cost laptops use SSDs that of-
fer performance and capacity between that of their RAM
and external hard drives. For these environments, a low-
end laptop (256MB RAM) using all of its SSD (typically
4GB) for indexing can provide performance comparable
to larger servers.

2.3 Bandwidth Shifting
Bandwidth-shifting is the term we use to describe mov-

ing bandwidth consumption from a high-cost location
to a low-cost location. While Web caches are single-
sided (i.e., the client knows when content is cacheable
and can avoid contacting the server), WAN accelerators
operate in pairs, with one end fetching the content from
the server. Bandwidth in the developing world is often
more expensive, even in absolute terms, than in high-
bandwidth countries. We intend to exploit this difference
by providing WAN acceleration endpoints in lower-cost
regions – the WAN endpoint fetching from the server is
located in the low-cost region, so most content is fetched
at lower cost. Only the compressed data between the
WAN accelerators enters the developing region.

We intend to use our background in developing con-
tent distribution networks [15, 23] to address the geoloca-
tion and peer selection mechanisms needed to determine
which low-cost region should be used when fetching con-
tent. We have some experience understanding the in-
teraction between CDNs and localized content [14, 18],
and intend to use this to minimize the possible disrup-
tion in choosing off-continent servers to fetch content.
One possible casualty of this approach would be local-
ized advertising – if all content is fetched off-continent,
then the ads presented may be in the regions of cheap
bandwidth, rather than the local region. While this may
seem to be of little consequence, many Web sites are ad-
supported, and local advertisers may not be willing to
patronize content providers that appear to have a mostly
foreign audience. Our current plan is to pass along an
X-Forwarded-For header that contains the local IP ad-

dress, and hope that web sites collect that information
for advertising and analytics.

2.4 Prefetching
While bandwidth-shifting moves bandwidth consump-

tion in space, prefetching moves bandwidth consumption
in time. The combination of a Web cache and a WAN
accelerator also means that most Web content has some
potential utility, either as a fully cacheable page, or as
fragments of a page that can populate the WAN accelera-
tor. Off-peak demand, especially for schools, can be near
zero, and presents an opportunity to pre-load content for
the next day. Traditional concerns regarding prefetching,
such as self-interference on the network, are mitigated
during off-peak hours. Even the question of utility of
prefetched content becomes less important, since having
several months of storage capacity makes it unlikely that
a prefetch will evict anything recently-used. Even sim-
ple prefetching approaches, such as crawling news sites
every morning, are likely to have a benefit in shifting
bandwidth demand. More complicated approaches, such
as analyzing the previous day’s traffic logs, are also pos-
sible.

The main challenge we expect is to determine how to
prefetch previously-unseen content. News sites and ag-
gregator sites can contain dozens or hundreds of links,
and for prefetching to be truly useful, we must expect to
prefetch all of the images and associated content on the
pages of interest. If downloading several dozen to hun-
dreds of full pages per site is not realistic, some mech-
anism must be used to determine which of these links
are most likely to be used in the future. Most existing
prefetching research assumes that object popularity and
correlation are inputs to the system, whereas in our prob-
lem, even the objects themselves are new. The solution
to this problem may not be entirely technical – we may
opt to visually distinguish links that are already cached,
so that the user can see which news stories are likely to
load the fastest.

Note that neither prefetching nor bandwidth-shifting
actually reduce total bandwidth consumption – they sim-
ply move the bandwidth consumption in time or in place,
and are likely to actually increase the total number of
bits transferred in the network. The benefit, however,
is that the number of bits traversing the bottleneck link
at peak hours should decrease substantially, improving
end-user response time. In environments where every bit
is metered, the degree of congestion reduction must be
weighed against the added cost. In such environments,
much more conservative prefetching may be appropriate.

2.5 Snooping
Snooping is an extension to prefetching, and involves

using broadcast channels to populate peer caches. Users
within wireless range of each other may opt to disable
encryption to make their traffic cacheable to other users.
Likewise, if multiple schools share the same satellite in-
frastructure, they may opt to let others populate their
caches using the broadcast traffic already consuming band-
width. A similar idea was used for static caches by the
now-defunct commercial service Edgix many years ago,
but was done without WAN acceleration, so it only ben-

efited static content. In that system, the satellite broad-
cast system was used as a feeder to the caches, rather
than satisfying two-way traffic for users.

Given the use of WAN acceleration, even fragments of
content can provide benefit. In wireless multi-hop mesh
network environments, such as those being deployed by
OLPC or Meraki, it may be useful to deploy caches at
multiple locations in the network to save wireless band-
width. Snooping on large transfers has been shown to
be a problem in these environments [7], but with WAN
accelerators, even if part of the transfer is missed when
snooping, the rest can be cached.

2.6 Offline Access
Transparent off-line access similarly builds around caching

and WAN acceleration – when external connectivity is
lost, the local Web cache can satisfy requests, but by
itself, cannot provide the illusion of full connectivity.
However, when combined with the WAN accelerator, it
can be used to store multiple versions of dynamic con-
tent, such as keeping track of what page was last served
to each user. Since WAN accelerators can identify the
same content in multiple responses, it forms the basis
of a deduplication system – for a dynamic page, one
copy of the common content is stored, as well as one
content of each set of per-user differences. For pages
that are dynamically-generated but contain no indica-
tion of per-user customization, we may opt to provide
them when they are not available. This approach has
been used for several years by the Coral CDN [9] to of-
fload flash crowds, reducing concerns about private in-
formation leakage.

In the US and Europe, offline access is likely to be
desirable more for personal usage, to allow users to see
previously-visited content while out of network range. In
contrast, the feedback we have received from our current
HashCache deployments is that any content that can be
provided offline would be greatly beneficial, given how
often external network access is lost. Similar to how we
envision modifying links to indicate prefetched content,
we may have to use other interface-focused approaches
to indicate what content is available offline and how stale
it is.

2.7 Local Search
Offline access can also be augmented by adding local

search support, so that cached content can be searched
when online search is unavailable or slow. Our intended
model is a blend of Tek [22] and RuralCafe [6] – existing
search results are presented when available, but if not,
a local search is performed using an embedded search
engine. This search engine does not have to perform as
well as commercial search services to be useful, since the
goal is to still have some content availability during dis-
connection, even if the specific ranking and presentation
is not as polished.

To that end, we may opt to provide less accurate search
if it can bound the complexity of indexing. For example,
one of the mechanisms that HashCache uses to reduce
disk access is to limit the size of hash bins – with a
fixed allocation per bin, the disk layout becomes more
regular. Search engines have to build inverted indexes,

showing which Web pages contain particular words [4]. If
offline search can ignore some pages from the indexes for
frequently-occurring words, it may be possible to build
more disk-friendly indexing data structures.

3. RELATED WORK
The spectrum of connectivity options for developing

regions ranges from physical distribution of data with
intermittent access, such as delay-tolerant networking,
to wireless connectivity for rural and remote regions [16,
24]. We view our approach as a later-stage development
after the introduction of connectivity, and we focus on
those with network access as our initial target.

Much research in WAN optimization has focused on
protocol-independent schemes, beginning with Spring and
Wetherall [19] finding anchors within packets to recent
work extending packet caching to routers [2]. The most
closely related work in this area is RTS-id [1], which
eliminates redundancy in the wireless environment, by
caching recently transferred packets through eavesdrop-
ping. However, these approaches work on a per packet
basis on link layer, which is less desirable when using
low-end disks as the storage facility. In this scenario,
our approach of operating on byte streams allows for
larger contiguous regions, which reduces the number of
disk seeks needed to serve content.

In the area of prefetching, the early work by Pirolli and
Pitkow [17] examine log files to understand the behav-
ior of users traversing a Web site. This kind of analysis
dominates the prefetching world, with both theoretical
approaches [5] and implementations [12] focusing on how
to improve prefetching given a known set of links and the
past behavior of other users. For our environment, the
goal is to prefetch previously-unseen content and move it
to our virtually-unlimited disk storage. As a result, the
prefetching techniques we develop will have to predict
the utility of new content, rather than the usage behav-
ior of existing content. Given that the wide-area link is
expected to be much slower or more contended than disk,
we do not expect to perform much link prefetching from
disk. HashCache already performs some grouping and
prefetching of related objects, which reduces the number
of seeks for fetching Web pages from disk.

4. CONCLUSION
We believe providing first-class Internet access for de-

veloping regions is not only crucial for true information
exchange and participation, but that it is also technically
viable with recent hardware innovations. We argue that
the key to first-class access lies in an intelligent network-
ing software stack, which scalably and transparently am-
plifies the limited physical network capacity beginning to
become available in these regions. Scalable caching stor-
age allows practically unlimited storage of past network
traffic and WAN acceleration transforms redundant re-
mote delivery to efficient local fetch by eliminating dupli-
cate network transfers. Network traffic cost optimization
is possible with careful bandwidth shifting and usage-
aware prefetching will enable time shift of bandwidth
consumption and maximizig the physical network capac-
ity even when it is idle. Snooping of broadcast wireless

traffic can further reduce network traffic without special
coordination.

In order to realize our vision, we have developed Hash-
Cache, a scalable caching storage system, and Wanax, a
high-performance WAN acceleration engine which can
comfortably run on a low-powered commodity laptop at
the same time. Our early evaluation with realistic work-
loads shows a promising result in this direction. We are
currently developing other techniques on top of these sys-
tems and are actively pursuing deployment in developing
regions in collaboration with organizations participating
in Intel’s World-ahead program and the One-Laptop-
Per-Child project.

5. ACKNOWLEDGMENT
We thank anonymous CFI reviewers for their help-

ful comments. This research was partially supported
by NSF awards CNS-0615237 and CNS-0916204, and
KAIST award G04100004.

6. REFERENCES
[1] Mikhail Afanasyev, David G. Andersen, and

Alex C. Snoeren. Efficiency through
eavesdropping: Link-layer packet caching. In
Proceedings of USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2008.

[2] Ashok Anand, Archit Gupta, Aditya Akella,
Srinivasan Seshan, and Scott Shenker. Packet
caches on routers: The implications of universal
redundant traffic elimination. In SIGCOMM, 2008.

[3] Anirudh Badam, KyoungSoo Park, Vivek Pai, and
Larry Peterson. Hashcache: Cache storage for the
next billion. In Proceedings of USENIX Symposium
on Networked Systems Design and Implementation
(NSDI), 2009.

[4] Sergey Brin and Lawrence Page. The anatomy of a
large-scale hypertextual web search engine. In
Computer Networks and ISDN Systems,
volume 30, pages 107–117, 1998.

[5] Pei Cao, Edward W. Felten, Anna R. Karlin, and
Kai Li. A study of integrated prefetching and
caching strategies. In Proceedings of the ACM
SIGMETRICS’95, 1995.

[6] Jay Chen, Lakshminarayanan Subramanian, and
Jinyang Li. RuralCafe: Enhancing web search in
intermittent networks. In Proceedings of WWW’09,
2009.

[7] Fahad Dogar, Amar Phanishayee, Himabindu
Pucha, Olatunji Ruwase, and David Andersen.
Ditto - A System for Opportunistic Caching in
Multi-hop Wireless Mesh Networks. In Proceedings
of ACM MobiCom, 2008.

[8] The Measurement Factory.
http://www.web-polygraph.org/docs/

workloads/polymix-4/.

[9] Michael J. Freedman, Eric Freudenthal, and David
Mazieres. Democratizing content publication with
coral. In Proceedings of USENIX Symposium on
Networked Systems Design and Implementation
(NSDI), 2004.

[10] Sunghwan Ihm, KyoungSoo Park, and Vivek S.
Pai. Wide-area network acceleration for the
developing world. In Proceedings of the USENIX
Annual Technical Conference (USENIX’10), June
2010.

[11] Intel. Classmate PC,
http://www.classmatepc.com/.

[12] Ravi Kokku, Praveen Yalagandula, Arun
Venkataramani, and Mike Dahlin. NPS: A
Non-interfering Deployable Web Prefetching
System. In Proceedings of USITS’03, 2003.

[13] One Laptop Per Child.
http://www.laptop.org/.

[14] KyoungSoo Park, Vivek Pai, Larry Peterson, and
Zhe Wang. CoDNS: Improving dns performance
and reliability via cooperative lookups. In
Proceedings of the Symposium on Operating
Systems Design and Implementation (OSDI), 2004.

[15] KyoungSoo Park and Vivek S. Pai. Scale and
performance in the CoBlitz large-file distribution
service. In Proceedings of USENIX Symposium on
Networked Systems Design and Implementation
(NSDI), 2006.

[16] Rabin Patra, Sergiu Nedevschi, Sonesh Surana,
Anmol Sheth, Lakshminarayanan Subramanian,
and Eric Brewer. Wildnet: Design and
implementation of high performance wifi based
long distance networks. In Proceedings of USENIX
Symposium on Networked Systems Design and
Implementation (NSDI), 2007.

[17] Peter L. T. Pirolli and James E. Pitkow.
Distributions of surfers’ paths through the world
wide web: Empirical characterizations. World
Wide Web, 2(1-2):29–45, 1999.

[18] Lindsey Poole and Vivek Pai. ConfiDNS:
leveraging scale and history to detect compromise.
In Proceedings of the USENIX Annual Technical
Conference (USENIX’08), 2008.

[19] Neil T. Spring and David Wetherall. A
protocol-independent technique for eliminating
redundant network traffic. In ACM SIGCOMM,
2000.

[20] Squid. http://www.squid-cache.org/.

[21] S. Revi Sterling, John W. O’Brien, and John K.
Bennett. Advancement through interactive radio.
In Proceedings of ICTD 2007, 2007.

[22] William Thies, Janelle Prevost, Tazeen Mahtab,
Genevieve T. Cuevas, Saad Shakhshir, Alexandro
Artola, Binh D. Vo, Yuliya Litvak, Sheldon Chan,
Sid Henderson, Mark Halsey, Libby Levison, and
Saman Amarasinghe. Searching the world wide
web in low-connectivity communities. In
Proceedings of WWW’02, 2002.

[23] Limin Wang, KyoungSoo Park, Ruoming Pang,
Vivek Pai, and Larry Peterson. Reliability and
security in the CoDeeN content distribution
network. In Proceedings of the USENIX Annual
Technical Conference (USENIX’04), 2004.

[24] WiMAX. http://www.wimaxforum.org/home/.

