Is Large MTU Beneficial to Cellular Core Networks?

Youngmin Choi*', Junghan Yoon*¥, YoungGyoun Moon* and KyoungSoo Park’
TKAIST *Samsung Research
South Korea

ABSTRACT

The Maximum Transmission Unit (MTU) refers to the largest packet
size that can be transferred on a particular layer-3 network. As the
dominance of Ethernet prevails, the "de-facto" standard MTU of
1500B has become universal in the wide-area networks. Unfortu-
nately, the current MTU size overly limits the transmission perfor-
mance especially when the underlying link speed rapidly increases
while the CPU advancement stagnates.

In this work, we investigate the potential impact of large MTU
on fast-growing cellular core networks. First, we analyze the per-
formance trend over the different MTU sizes on endpoint receivers
as well as on User Plane Function (UPF) in a cellular core network
that handles all data packets. Second, we present our dynamic MTU
translation technique to transparently apply a large MTU inside a
cellular core network without requiring update on other networks
in the Internet. We observe that that large MTU is beneficial to both
traffic endpoints and UPF, and our evaluation shows that dynamic
packet merging scales the UPF performance by up to 4.9x, reaching
628 Gbps with only eight CPU cores.

CCS CONCEPTS

« Networks — Routers; Wired access networks; Mobile net-
works; Middleboxes / network appliances; Network perfor-
mance analysis.

KEYWORDS
Cellular core networks, 5G, UPF, MTU, GRO

ACM Reference Format:

Youngmin Choi*, Junghan Yoon*', YoungGyoun Moon* and KyoungSoo
Park?. 2023. Is Large MTU Beneficial to Cellular Core Networks?. In 7th
Asia-Pacific Workshop on Networking (APNET 2023), June 29-30, 2023, Hong
Kong, China. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
3600061.3600081

1 INTRODUCTION

Recent computing hardware trend shows that the network band-
width continues to grow dramatically while the advancement of

hThey contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

APNET 2023, June 29-30, 2023, Hong Kong, China

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0782-7/23/06...$15.00
https://doi.org/10.1145/3600061.3600081

CPU has largely slowed down [7, 13]. Unfortunately, the widening
gap between bandwidth and computation capacity poses a serious
challenge to increasing the bandwidth of a cellular core network.
As modern cellular core networks employ commodity-off-the-shelf
(COTS) hardware, achieving high bandwidth would often depend
on the throughput of a COTS server component like User Plane
Function (UPF), which routes and forwards all data packets between
the Internet ~ and the core networks.

One simple idea that would easily scale the network transmit
(TX) /receive (RX) efficiency is adopting a large maximum trans-
mission unit (MTU). A large MTU size would not only increase the
payload-to-header ratio, but it would also improve the performance
of direct memory access (DMA) between a network interface card
(NIC) and host CPU. Especially, 5G UPF operates by looking up
multiple rule tables for each packet, a larger MTU size would sig-
nificantly reduce the packet processing load. For example, a jumbo
frame (9000B-MTU) would reduce the processing load by six times
over typical 1500B frames.

Unfortunately, due to the dominance of Ethernet as the layer-2
protocol, the 1500B-MTU has been fixated as the "de-facto” stan-
dard value in the Internet for many decades. However, there is no
fundamental reason why we must stick to this ancient value, which
is a byproduct of old 10 Mbps Ethernet for collision detection (CD)
in a shared medium that supports carrier sense multiple access
(CSMA) [14]. In contrast, virtually all end hosts are connected to
switched Ethernet that largely obviates CSMA/CD these days. Nev-
ertheless, modern networks are still tied up with this obscure value
from an old technology.

There are a few reasons why network administrators are reluc-
tant to upgrade the MTU size of their network. First, there might
be legacy Ethernet devices in their network that cannot support an
MTU size larger than 1500B. An IP packet is subject to fragmen-
tation when it passes through a network of an MTU size smaller
than its packet size, which would substantially lower the forward-
ing performance. However, this is unlikely to be a valid argument
any more as modern Ethernet devices typically support a much
larger MTU size than 1500B. Also, mechanisms like path MTU dis-
covery [18] and the TCP maximum segment size (MSS) option at
connection setup [19] will avoid IP packet fragmentation by picking
the minimum path MTU. Second, a more plausible reason might be
due to the perception that there is no real benefit in using a large
MTU size. Traffic senders can reduce the DMA overhead by using
a popular NIC offload feature like TCP segmentation offload (TSO).
Also, traffic receivers may reduce the DMA overhead by turning on

“Or Public Data Network (PDN) in 3GPP jargon.

https://doi.org/10.1145/3600061.3600081
https://doi.org/10.1145/3600061.3600081
https://doi.org/10.1145/3600061.3600081

APNET 2023, June 29-30, 2023, Hong Kong, China

----- Control ()
— Data A awe FNL sy
N1 A N4~
() - N2
D A N3 UPF N6
UE gNodeB)L)
NG-RAN 5GC

Figure 1: The architecture of cellular network

large receive offload (LRO) " and/or generic receive offload (GRO) "
In addition, today’s in-network Ethernet switches are capable of
transferring packets at tens of Tbps [11, 12, 20] even with the 1500B-
MTTU, there is little incentive to adopt a larger MTU size. However,
our experiments show that the effectiveness of LRO/GRO rapidly
drops even with only a few concurrent flows, so larger MTU can
still provide practical benefit. Plus, an in-network function like
cellular UPF would highly benefit from reducing the number of
packets for transferring the same amount of data.

In this work, we analyze the benefit of large MTU in a cellular
core network. Our experiments show that larger MTU is gener-
ally beneficial to traffic RX endpoints, and even when there are
multiple flows, the performance degradation with larger MTU is
much lower than that with 1500B-MTU. In addition, we find that
the performance of UPF linearly grows to the MTU size. Then, we
present how to transparently apply a large MTU without requiring
update on the other networks in the Internet. The key idea is to
exploit common NIC offload features (i.e., LRO/GRO) as well as
scatter-gather DMA in the external UPF. Unfortunately, LRO/GRO
alone becomes ineffective if multiple arriving flows are intermixed
in the NIC RX queues. To overcome the problem, we employ the
following two techniques. First, we increase the number of NIC
RX queues to benefit from receive-side scaling (RSS) and minimize
the intermixing of many flows into a particular RX queues. Sec-
ond, we improve the efficiency of software GRO by implementing
hashtable-based packet merging.

We implement our prototype UPF called dUPF, based on an
open-sourced UPF implementation [15]. Our evaluation shows that
dynamically increasing the incoming packet size improves the UPF
processing throughput by 3.1x to 4.9x. We find that dUPF effectively
increases the packet size — the average packet size is over 13KB and
67+% of the RX packets are larger than 4.5KB.

2 MOTIVATION

We present our motivation for applying a large MTU to a cellular
core network.

2.1 Why Cellular Core Network?

There are a few reasons why we consider a cellular core network
as the beneficiary of large MTU. First, a cellular core network is

"LRO is a NIC hardware feature that coalesces contiguous TCP packets that arrive
back to back into a single packet with the merged payload.

"GRO does the same task as LRO, but it runs as software in the kernel (or in the RX
logic in DPDK [23]) for the RX’ed packets. Also, GRO can even merge the contiguous
packets that did not arrive back to back.

Youngmin Choi*’, Junghan Yoon*", YoungGyoun Moon™* and KyoungSoo Park’

Application BW requirement
60Hz 4K video streaming 25Mbps

60Hz 8K video streaming 100Mbps

120Hz 4K, 8K VR/AR (Cloud Rendering) 0.1 ~ 1Gbps
120Hz 4K, 8K VR/AR (VR headset) 0.1 ~ 10Gbps

Table 1: Bandwidth requirements of video applications [1, 34]

essentially a private network whose administrative policy is fully
determined by a single operator. This means that the administrators
can adopt and enforce whatever MTU size in their internal network
without consulting with other networks if it benefits their network
and/or subscribers. Second, there is a growing need to scale the
bandwidth capacity of a cellular core network. Bandwidth-heavy
mobile applications like high-quality video streaming, virtual reality
(VR), and augmented reality (AR) applications drive up the capacity
demand of a modern cellular network, and the network must be
operated in a cost-effective manner. This is especially important as
modern cellular core network runs on x86 COTS servers. Higher
per-server performance would significantly reduce the operational
expenditure (OpEx). We provide a brief background on the cellular
core network as well as the bandwidth requirements of high-quality
video applications below.

Cellular core network architecture. Figure 1 shows a simplified
architecture of the 5G cellular network. It consists of a radio ac-
cess network (RAN) and a core network. RAN allows base stations
(called gNodeBs in 3GPP jargon) to communicate wirelessly with
user equipments (UEs) and a core network forwards the IP packets
between a RAN and a public data network (PDN) (i.e., the Internet).
The functionality of a core network is largely divided into control
and user planes where the former handles all control tasks such
as UE mobility management, authentication/authorization, packet
routing policy, etc., while the latter performs IP data packet switch-
ing. The key component of the data plane is User Plane Function
(UPF), which routes all IP packets from the PDN to UEs by GTP
tunneling and forwards the GTP packets from UEs to the PDN
after de-capsulating the GTP headers. Since UPF handles all IP
data packets, the UPF performance often determines the bandwidth
capacity of a core network. For each incoming packet, the UPF
runs a series of match-and-actions with the rules set by the Session
Management Function (SMF) through the N4 interface. These rules
dictate how to identify packets (packet detection rules (PDRs)), how
to forward them (forwarding action rules (FARs)), how to process
them (buffering action rules (BARs)), how to mark them (QoS en-
forcement rules (QERs)), how to compute and report the usage of
them (usage reporting rule (URRs))), and so on.

Bandwidth requirements of mobile applications. Mobile appli-
cations that require high-quality video streaming will demand much
larger bandwidth in the near future. Table 1 refers to [1, 34], which
shows the bandwidth requirements of some bandwidth-heavy ap-
plications in the mobile network. As shown in this table, VR/AR
contents require up to 1 Gbps for cloud (or edge) rendering, and
they even require up to 10 Gbps when using a VR headset that of-
ten has insufficient computing power for decoding the compressed
data in real time. To support these applications, upcoming 6G core
network must deliver a much larger per-user throughput than 5G

Is Large MTU Beneficial to Cellular Core Networks?

~40 = 40 -
2 31 & 30

g 30 26 B30 26

820 1 15 520 15

10 s 10

g 3

z 0 20

= & No-Opt LRO GRO LRO

1500 3000 6000 9000

MTU size (bytes) +GRO

APNET 2023, June 29-30, 2023, Hong Kong, China

0
(=]
)

353
(=3
(=]

#1500B %3000B 45008 2
S 150
548, <

145
e 3 L 3 43 = 98 120
4P — e gk A =
3 * = — x3y H 5 76
a2l 5 50 {27 I]
¢, o 0l
=
=

1500 3000 4500 6000 7500 9000
MTU size (bytes)

D
(=]

353
(=R

Throughput (Gbps)
S
[=}

1 5 10 20 40
Number of concurrent flows

(a) Impact of MTU size (single (b) Impact of GRO/LRO (single (c) Impact of concurrent flows (d)Impactof MTU size on UPF per-

flow) flow)

— GRO/LRO enabled w/ different formance
MTUs

Figure 2: Effectiveness of large MTU and GRO/LRO. (a)-(c) show the performance at a receiver, and (d) shows UPF performance.

core network. Not only VR/AR streaming but also other candidate
6G applications like immersive XR, high-fidelity holograms, and
digital replica are likely to demand 10x to 50x peak data rate than
5G [6, 32]. In this context, we expect our optimization scheme for
heavy-bandwidth applications, called dynamic MTU translation, to
be essential for the next generation core network.

2.2 Is Large MTU Beneficial?

Benefit of large MTU to endpoints. Figure 2a compares the RX
throughputs over varying MTU sizes with a single TCP flow on
a client. ~ We use iPerf [26] for benchmarking to minimize the
application-level overhead. Both server and client use a single CPU
core to avoid any other host network stack overheads resulting
from multiple CPU cores [10]. We observe that the throughput
improves by 2.1x when increasing the MTU from 1500 to 9000B -
this confirms that larger MTU improves DMA efficiency and reduces
TCP/IP packet processing overheads. However, we also find that
one may achieve a similar throughput by enabling GRO and LRO
without even increasing the MTU. Figure 2b shows that the single
flow throughput is improved up to 32.4 Gbps by turning on LRO and
GRO with 1500B-MTU. However, we find that the effectiveness of
GRO/LRO rapidly degrades even with a small number of concurrent
flows. As shown in Figure 2c, the aggregate throughput drops by
34% if we have 10 concurrent flows. As the number of flows grows,
more packets from different flows get interleaved, which loses the
chance of packet aggregation. While we do see a similar trend with
larger MTUs, the throughput degradation with larger MTU is much
lower (i.e., 13-16% at 10 concurrent flows) than that with 1500B-
MTU. We conclude that large MTU is still beneficial to endpoints
even with concurrent flows.

Support for larger MTU on UE? In general, for a wireless channel,
the data transmission size directly affects the Bit Error Rate (BER),
so it should be set carefully. However, in a cellular access network
(e.g., NG-RAN in Figure 1), the link layer (L2) dynamically adjusts
the Transport Block Size (TBS) [3] that the channel can transfer
at a time as the capacity of channel (L1) is not fixed. There is a
sub-layer named Radio Link Control (RLC) [4] inside the link layer
to support segmentation and concatenation of data unit from the
upper layer. Thus, the MTU size set by the UE kernel does not affect
the BER, and can be set to a larger number than 1500B. Technically,
the only limit for the MTU size is the buffer size of the underlying

“For experiment setup details, please refer to Section 4.

sub-layers which are implemented in hardware. The 3GPP spec for
5G standard [5] defines the maximum supported size of Service
Data Unit (SDU) as 9000B for the Packet Data Convergence Protocol
(PDCP) sub-layer which is an upper layer above the RLC sub-layer.
Since there is one more upper layer named Service Data Adaptation
Protocol (SDAP) on top of the PDCP sub-layer, which requires its
own 1B header [2], UEs can use jumbo frame with size of 8999B,
giving them the same benefits as wired endpoints.

Benefit of large MTU to UPF. We analyze the impact of larger
MTU with an open-sourced UPF implementation of the Open Mo-
bile Evolved Core (OMEC) project driven by Open Networking
Foundation (ONF) [15]. It employs BESS [17], a modular software
switch that runs on DPDK][23], that serves as the software-based
datapath for UPF. The rule setup for UPF is described in section 4.
Again, we use iPerf to generate TCP traffic and employ a single CPU
core for UPF. We set up both server (in the PDN side) and client (in
the UE side) to employ enough CPU cores to make sure that neither
of them becomes a performance bottleneck. Figure 2d demonstrates
that the UPF performance almost linearly scales to the size of MTU.
At 9000B-MTU, the performance becomes 5.4x as large as that of
1500B-MTU. We generate 100 concurrent flows and ensure that
each flow achieves from 270 Mbps to 1.5 Gbps depending on the
MTU size, which meets the bandwidth requirement of our target
applications in Section 2.1. Larger MTU is more beneficial to UPF
performance as UPF typically processes the packets with only their
header information.

Takeaways. Large MTU is beneficial to the performance of both
endpoints and UPF. The benefit of large MTU with an endpoint
becomes relatively more significant with concurrent flows while
the benefit to UPF is even larger as the packet processing through-
put linearly scales to the MTU size due to header-based processing.
Then, the key question is how to increase the MTU without coordi-
nating with the PDN, which is the focus of the next section.

3 TRANSPARENT SCALING OF THE MTU SIZE

We have demonstrated that a large MTU size is beneficial to both UE
and UPF. In this section, we present how to realize a large MTU size
for UPF and UEs without updating the MTU size in other networks.

"3GPP 5G standard dictates that the UPF must handle deep packet inspection (DPI)
rules if any, but one can configure a hierarchy of UPFs so that the first line runs
header-based processing while the subsequent layers process DPI-related rules.

APNET 2023, June 29-30, 2023, Hong Kong, China

(7)

A_QER
(Ceor K:s{TFar }»(BAR)

N,

® Rule Lookup" URR

[@ GTP Encap/Decap]
@ Tx larger @ Rx 15008

MTU packets %‘“ ® GRO MTU packets
1
= —
® TS0 ﬁ—‘ ® LRO
UE

\ User Plane Function

«

)
o
=2

Figure 3: Overall Architecture of dUPF
3.1 Dynamic MTU Translation

Our key idea is to dynamically translate the MTU size at an PDU
Session Anchor UPF (A-UPF). Figure 3 shows the overall operation.
Since the A-UPF neighbors with both the PDN and the core network,
we can configure it to use the 1500B-MTU for the PDN side while
we set up a larger MTU size for internal use in the core network. For
downstream traffic, the A-UPF reads and merges continuous TCP
packets in the same flow into a single large packet, executes the
UPF tasks with the merged packet, segments it to smaller packets
to fit internal MTU, GTP-encapsulates " and forwards them over
to the core network to reach the target UE. For upstream traffic,
the A-UPF GTP-decapsulates each incoming packet, and segments
it into 1500B-MTU packets (using TSO if NIC supports it), and
forward them onto the PDN.

The A-UPF leverages LRO and GRO to merge the contiguous
TCP packets coming from the PDN. We find that GRO is more
effective than LRO in merging the packets when the number of
concurrent flows increases. This is unsurprising as LRO requires
that the contiguous packets arrive sequentially into an RX queue
on a NIC. However, one downside with GRO is that it consumes
CPU cycles, which could become significant if it deals with a large
number of packets with many flows. We improve the behavior of
the GRO implementation of DPDK below, which effectively reduces
the CPU overhead.

One issue lies in determining the optimal MTU size. A larger
MTU is generally more desirable as it reduces the per-packet over-
head, but if it is too large, it could waste UPF LRO buffers and
may affect the error detection capability of CRC-32 in Ethernet
frames [29]. We currently limit it to 9000B-MTU as this size is pop-
ular in closed networks, but we plan to investigate on the optimal
value in the future.

3.2 Deployment Issues and Optimizations

TCP MSS option and Path MTU discovery. To enable large
MTU in the core network, A-UPF needs to deceive the UE into
believing that the servers in the PDN also employ the same MTU
size as in its own network. For this purpose, A-UPF must coordi-
nate with the end-to-end MTU discovery process. First, it needs
to correct the maximum segment size (MSS) in the TCP MSS op-
tion [19] exchanged at TCP connection setup. Specifically, it needs
to update the MSS value sent from the the PDN side so that UEs

“NICs often support TSO with GTP tunneling [25].

Youngmin Choi*’, Junghan Yoon*", YoungGyoun Moon™* and KyoungSoo Park’

receive a larger MSS value at TCP connection setup. Likewise, path
MTU discovery [18] packets (with the "Don’t fragmentation” bit
on) from an UE must be split into 1500B-MTU packets before being
forwarded to the PDN ". This would not generate ICMP packets
with "Fragmentation Needed".

Hashtable-based GRO. DPDK provides a function that imple-
ments GRO of RX’ed packets. Unfortunately, the current implemen-
tation is inefficient on two fronts. First, it employs linear search to
find the matching flow that an incoming packet belongs to. So, if
there are k concurrent flows that are candidates for packet merging
and n RX’ed packets, then it would run in O(kn) time. Depending
on the size of k, the overhead could become significant. Second, it
implements only one-sided merging, which loses the extra oppor-
tunity for merging for packets that arrive out of order. Say, packets
arrive in the order of C, A, B, packet B is merged with only packet
C in the current implementation, losing the opportunity to merge
with packet A after the first merge.

We first reduce the overhead of linear search by implementing
GRO with a hash table. For each RX packet, our implementation
looks up the flow in the hash table with the four tuple of the RX
packet. Once the matching flow is found, it tries merging the packet
into the flow. If the matching flow does not exist, it creates a flow
from the packet and inserts it into the hash table. Since a hash table
lookup takes O(1) time, our implementation runs in O(n) time for n
RX packets. To avoid hash computation on CPU, we have the NIC
tag the receive-side scaling (RSS) hash value (or Toeplitz hash value)
of the packet along with it. Second, we fix the packet merging logic
of DPDK GRO to consider merging packets on both sides, i.e., left
and right sides of the incoming packet.

Increasing the number of RX queues to better exploit LRO/GRO.
RSS on NIC ensures that the packets in the same flow are steered
to the same RX queue. This allows all packets in the same flow to
be processed by the same CPU core that handles the RX queue,
which enables scalable processing without lock contention. Since
RSS is a NIC hardware feature, if we increase the number of RX
queues per CPU core, one can reduce the number of flows that are
mapped to a particular RX queue without any CPU consumption.
Fewer flows in a RX queue would increase the chance of LRO while
they improve the efficiency of the GRO logic as well. While a larger
number of RX queues increase the packet RX overhead as a CPU
core needs to read from multiple RX queues, we find that more
efficient LRO/GRO often outweighs the RX overhead.

Implementation.We implement our prototype, dUPF, on the UPF-
EPC project [15] that employs BESS [17] as the data plane. Since
BESS is based on DPDK, we implement our logic as a part of the
DPDK RX code. We enable LRO to merge the packets from the N6
interface up to 9000B, and adjust the MSS option field after parsing
a TCP SYN packet. We insert PDRs and sub-rules to global rule
tables implemented as lock-free cuckoo hash tables. For the imple-
mentation of hashtable-based GRO, we use packet buffer chaining,
and avoid any redundant memory copy for GRO. It requires 189
lines of C code for MTU translation, 463 lines for hashtable-based
GRO, and 281 lines for BESS script for supporting multiple NICs
and multiple RX queues.

"This might generate partial ACKs in case of packet loss in the PDN, but it does not
violate the TCP protocol.

Is Large MTU Beneficial to Cellular Core Networks?

APNET 2023, June 29-30, 2023, Hong Kong, China

’%: 800 744upF 628 g 800 #Throughput 25 % ’é: 150 110 131 JEN

° &Baseline &Average packet size <)

9600 0 @700 gep 200.:3U S 100

5 400 25 5 600 155 5 62

=% =% v &

"5 200 1371‘/53 101 4% 5500 oy B0 |2 |_|

2 o L= % £ 400 s 7 £ o LO

= = & £ Baseline LRO LRO LRO 9000B
1 2 4 8 1 2 6 8 ~ Linear Hash MTU in

Number of cores Number of RX queues per core GRO GRO PDN

(a) Throughput comparison over a different (b) Impact of the number of RX queues on dUPF

number of CPU cores performance

(c) Effectiveness of LRO + HashGRO

Figure 4: Performance evaluation with dUPF

4 PRELIMINARY EVALUATION

Setup. We employ a machine with a 16-core Intel Xeon Gold 6346
CPU with 36 MBs of LLC running at 3.10 GHz and four dual-port
NVIDIA ConnectX-6 100GbE NIC [31] (capable of handling up to
800 Gbps traffic) for UPF. We employ eight machines for clients and
servers where each machine is equipped with one ConnectX-6 NIC
capable of handling 200 Gbps traffic. For UPF rule configuration,
we install 4 million PDRs, 500K QERs, and 500K FARs. For QoS
rules, we set 2 Gbps of per-flow maximum bit rate (MBR), and
100 Mbps of per-flow guaranteed bit rate (GBR). We use iPerf to
generate large TCP traffic from servers to clients. We compare
the performance of dUPF and a baseline UPF that uses 1500B-MTU
without paket merging. For dUPF, we set up 1500B-MTU in the path
between the servers and UPF and 9000B-MTU between the clients

and UPF. For the baseline UPF, we use 1500B-MTU everywhere.

We leverage the NIC HW offload feature [24] that enables GTP
tunneling at dUPF and confirm that GTP tunneling with NIC HW
offload does not degrade the performance. For client-side GTP
tunneling support, we have tested with a gNodeB-like middlebox
that only en/decapsulates GTP header and forwards packets, which
does not reduce the throughput. However, we end up disabling GTP
tunneling for our experiments as it would require employing many
more middlebox machines than we have.

Overall throughput. Figure 4a compares the performance of dUPF
and a baseline UPF over a different number of CPU cores. We employ
100 concurrent flows per each CPU core employed. Overall, the
performance of both systems scale well with the number of CPU
cores while dUPF outperforms the baseline by 3.1x to 4.9x and its
throughput reaches 628 Gbps. The average packet size for dUPF
grows up to 8.7x larger than that of the baseline thanks to dynamic
packet merging. This significantly reduces the total number of
packets to be processed by dUPF and improves the performance as
most of UPF processing operates on packet header level. However,
the dUPF performance gets saturated at 8 CPU cores, and it does
not further improve as we employ more CPU cores. This seems
to be due to memory bandwidth bottleneck. We observe that the
memory bandwidth of the UPF machine measured by MLC [22]
is 150GB/s while the average memory bandwidth utilization with
dUPF is 108GB/s at 8 CPU cores, which gets close to the maximum
measured memory bandwidth.

0.6
S04 /
a0
0.2 /
0

0 9 18 27 36 45 54 63
Packet size (KB)

0.33
(4.5KB)

1 0.90

Figure 5: Packet size distribution at dUPF

Performance over the number of RX queues per CPU core.
Figure 4b shows the dUPF throughput over the number of RX queues
employed by each CPU core. For this experiment, we use eight CPU
cores that handle the traffic from eight 100 Gbps NIC ports. We
observe that the throughput scales well as the effectiveness of both
LRO and GRO improves with a fewer number of concurrent flows
per queue. However, the performance plateaus at 6 RX queues per
core, and the average packet size increases by 66% over using 1 RX
queue per core. While the average packet size grows further with
8 RX queues per core, the performance does not improve more as
CPU cache utilization degrades.

Effectiveness of LRO and GRO vs. static large MTU. We in-
vestigate the impact of each feature on the performance of dUPF
with a single CPU core. As shown in figure 4c, merging packets
with only LRO improves the UPF performance by 2.3x over a base-
line that disables LRO/GRO. Using both LRO and GRO with linear
search to merge RX packets improves the performance by 4.1x. So,
software GRO is substantially more effective than LRO alone. Our
hashtable-based GRO outperforms LRO+linear-search-GRO by 19%.
Employing static 9000B-MTU for both N3 and N6 interfaces would
perform the best, but this would require upgrading the MTU on all
networks. The performance with our technique is only 10% worse
than that with the static MTU.

Packet size distribution. Figure 5 shows packet size distribution
with 8 cores and 6 RX queues per each core at dUPF. We observe
that our techniques effectively enlarge the RX packet size — 66.5 %
of packets are larger than 4500B with the average packet size of
13 KB. We also measure packet size distribution at the client side.
As shown in figure 6, dUPF successfully increases the packet size
that gets forwarded to the client side — 75 % of packets are larger
than 4500B when the MTU is set up to 9 KB.

APNET 2023, June 29-30, 2023, Hong Kong, China

O1KB ~2KB
O4KB ~ 8KB

0O2KB ~ 4KB
B8KB ~ 9KB

Figure 6: Packet size distribution at client

o, w)
@ [SmartNIC]

-l Reassemble |<--|payload|-|--'l Split ln-- 1hdr|pay|oad|.|

6 payload |

Figure 7: Split-process-reassemble scheme

5 FUTURE DIRECTION

We plan to alleviate the memory bandwidth bottleneck and to
perform automatic parameter tuning in the future.

Split-process-reassemble. Figure 7 shows our split-process-
reassemble strategy. The key idea is to split the header and the
payload of each RX packet at SmartNIC and to move only the packet
header to main memory for UPF processing. The packet header
must carry the pointer to its payload at SmartNIC memory so that
it can be scatter-gather DMA’ed with its payload when it is for-
warded. After the packet header is finished with UPF processing, it
is tagged with the resulting action and delivered to the SmartNIC
so that SmartNIC carries out the action before forwarding. This
idea is similar to PayloadPark [16], but we apply it in a different
context with SmartNIC. We expect three benefits with this strategy.
First, it can reduce the DMA overhead substantially as only packet
headers are delivered to main memory. Second, it will improve CPU
cache utilization as a collection of packet headers would consume
a much smaller memory footprint. Third, its effectiveness can be
maximized with our dynamic MTU translation technique presented
in this paper.

Automatic parameter tuning. We observe that our UPF perfor-
mance is sensitive to the choice of parameters such as the number
of RX queues per CPU core, RX batch size, LRO buffer size, and so
on. These values affect the CPU cache utilization due to DDIO of
modern CPU, which has impact on the overall performance. We
plan to develop a tool that automatically finds the optimal values
for specific NIC hardware and CPU types.

6 RELATED WORK

Effectiveness of Large MTU. Murray et al. [29] investigate the
pros and cons of employing a jumbo frame (9000B-MTU) in the
public Internet. Similarly to our work, they report that large MTU

Youngmin Choi*’, Junghan Yoon*", YoungGyoun Moon™* and KyoungSoo Park’

improves the TCP transmission throughput with lower CPU usage,
but our work presents how to dynamically support large MTU in a
celullar core network without upgrading other networks. Salyers
et al. [33] present a layer-2 mechanism for efficient forwarding in
the Internet core network. In their scheme, an ingress router of the
Internet core network merges incoming frames destined to the same
egress router into a large frame. When the large frame reaches the
egress router, the egress router splits it into original small frames.
Their simulation result reports a better forwarding throughput, but
it does not carefully reflect the increased computational overhead at
the routers, which may become a bottleneck. There was a proposal
in the 5G Advanced standardization context [27] to concatenate
multiple PDCP SDUs to alleviate the L2 processing load in NR. Our
work would be also beneficial for reducing the NR data processing
load at base stations.

Cellular core network acceleration. There have been several
works that improving the data plane performance of a cellular core
network with programmable NICs or switches. Bose et. al. [8] ex-
ploit the dynamic device personalization (DDP) [21] feature in Intel
X710 NIC for flow steering, and offload both data plane and con-
trol plane functions of UPF to Agilio on-path SmartNIC [30]. They
report that SmartNIC-based offloading presents a great potential
for performance improvement but that it also limits the flexibility
of the operations by the operator such as dynamic scaling, han-
dling skewed traffic across users, etc. MacDavid et al. [28] present
a P4-based UPF. In their prototype, the data plane of UPF is imple-
mented with P4 [9] switches, and the control plane is implemented
with microservices which translate PFCP messages* to P4 runtime
commands. We believe UPF task offloading to programmable hard-
ware is promising in the future, but the current prototypes seem to
be hampered by limited memory size and processing capacity. A
hybrid architecture that harnesses both CPU and programmable
hardware would be a reasonable alternative.

7 CONCLUSION

In this paper, we argue that the de-facto MTU size of 1500B in the
current Internet overly limits the packet processing performance
at middleboxes and clients. We have investigated a cellular core
network as a special case and we have shown that a larger MTU
size is generally beneficial to the performance of both UEs and
UPFs in 5G core network. To enable large MTU transparently in
a cellular core network without requiring an upgrade elsewhere,
we have presented the dynamic MTU translation technique that
leverages standard NIC offload features such as GRO, LRO, TSO
and RSS as well as manipulating SYN MSS options and Path MTU
discovery packets. We have also shown that our hashtable-based
GRO implementation and enlarging the number of RX queues per
core significantly improve the UPF performance. Our preliminary
evaluation demonstrates that our solution, dUPF, improves the
packet processing throughput by 3.1x to 4.9x over a baseline UPF
and that 67% of the packets arriving at the client side have a size
larger than 4500B.

"PFCP (Packet Forwarding Control Protocol) messages consist of the rules required by
lookup on UPF, and they are sent by SMF via N4 interface.

Is Large MTU Beneficial to Cellular Core Networks?

ACKNOWLEDGMENTS

We appreciate the insightful feedback and suggestions from APNet
2023 reviewers. This work is in part supported by the Samsung
Research program, under [high performance 6G acceleration tech-
niques] and by the ICT Research and Development Program of
MSIP/IITP, Korea, under [2018-0-00693, Development of an ultra
low-latency user-level transfer protocol].

REFERENCES

(1]
(2]

[11]

[12

(13

[14

[15]

[16]

[17]

[18]

=
L

[20]

[21

3GPP. 2016. TS 22.261 Service Requirements for the 5G System (5GS). https:
//www.3gpp.org/DynaReport/22261.htm. Last Accessed: 2023-03-17.

3GPP. 2017. TS 37.324 Evolved Universal Terrestrial Radio Access (E-UTRA) and
NR; Service Data Adaptation Protocol (SDAP) specification. https://www.3gpp.
org/DynaReport/37324.htm. Last Accessed: 2023-03-17.

3GPP. 2017. TS 38.214 NR; Physical layer procedures for data. https://www.3gpp.
org/DynaReport/38214.htm. Last Accessed: 2023-03-17.

3GPP. 2017. TS 38.322 NR; Radio Link Control (RLC) protocol specification.
https://www.3gpp.org/DynaReport/38322.htm. Last Accessed: 2023-03-17.
3GPP. 2017. TS 38.323 NR; Packet Data Convergence Protocol (PDCP) specifica-
tion. https://www.3gpp.org/DynaReport/38323.htm. Last Accessed: 2023-03-17.
Next G Alliance. 2022. 6G Applications and Use Cases. https:
//www.nextgalliance.org/wp-content/uploads/dlm_uploads/2022/05/Next_G_
Alliance_6G_Applications_and_Use_Cases_7-1.pdf. Last Accessed: 2023-03-17.
Steve Blank. 2018. What the GlobalFoundries’ Retreat Really Means.
https://spectrum.ieee.org/nanoclast/semiconductors/devices/what-
globalfoundries-retreat-really-means. Last Accessed: 2023-03-17.

Abhik Bose, Diptyaroop Maji, Prateek Agarwal, Nilesh Unhale, Rinku Shah,
and Mythili Vutukuru. 2021. Leveraging Programmable Dataplanes for a High
Performance 5G User Plane Function. In Proceedings of the Asia-Pacific Workshop
on Networking (APNet). https://doi.org/10.1145/3469393.3469400

Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. 2014. P4: Programming Protocol-Independent Packet Processors.
SIGCOMM Computer Communication Review 44, 3 (jul 2014), 87-95. https:
//doi.org/10.1145/2656877.2656890

Qizhe Cai, Shubham Chaudhary, Midhul Vuppalapati, Jaehyun Hwang, and Rachit
Agarwal. 2021. Understanding Host Network Stack Overheads. In Proceedings
of the ACM Special Interest Group on Data Communication (SIGCOMM). https:
//doi.org/10.1145/3452296.3472888

Cisco. 2022. Cisco Nexus 9800 Series. https://www.cisco.com/c/en/us/products/
collateral/switches/nexus-9000-series- switches/nexus9800- series-switches-
ds.html. Last Accessed: 2023-03-17.

Dell. 2022. Dell PowerSwitch Z-series Spine, Core and Aggregation
Switches. https://www.delltechnologies.com/asset/en-us/products/networking/
technical-support/dell-powerswitch-z9664f-on-spec-sheet.pdf. Last Accessed:
2023-03-17.

Western Digital. 2016. CPU Bandwidth — The Worrisome 2020 Trend. https:
//blog.westerndigital.com/cpu-bandwidth-the-worrisome-2020-trend/. Last
Accessed: 2023-03-17.

IEEE Standards for Local Area Networks. 1985. Carrier Sense Multiple Access
With Collision Detection (CSMA/CD) Access Method and Physical Layer Spec-
ifications. ANSI/IEEE Std 802.3-1985 (1985), 13-130. https://doi.org/10.1109/
IEEESTD.1985.82837

Open Networking Foundation. 2022. UPF by Open Mobile Evolved Core (OMEC).
https://github.com/omec-project/upf. Last Accessed: 2023-03-17.

Swati Goswami, Nodir Kodirov, Craig Mustard, Ivan Beschastnikh, and Margo
Seltzer. 2020. Parking Packet Payload with P4. In Proceedings of the International
Conference on Emerging Networking EXperiments and Technologies (CONEXT).
Sangjin Han, Keon Jang, Aurojit Panda, Shoumik Palkar, Dongsu Han, and Sylvia
Ratnasamy. 2015. SoftNIC: A Software NIC to Augment Hardware. Technical Report
UCB/EECS-2015-155. EECS Department, University of California, Berkeley. http:
/Iwww2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-155.html

IETF. 1990. RFC 1191 - Path MTU Discovery. https://tools.ietf.org/html/rfc1191.
Last Accessed: 2023-03-17.

IETF. 2012. RFC 6691 - TCP Options and Maximum Segment Size (MSS). https:
//tools.ietf.org/html/rfc6691. Last Accessed: 2023-03-17.

Intel. 2018. Intel® Intelligent Fabric Processors. https://www.intel.com/
content/www/us/en/products/sku/218648/intel-tofino-2- 12- 8-tbps-20-stage-4-
pipelines/specifications.html. Last Accessed: 2023-03-17.

Intel. 2019. Intel® Dynamic Device Personalization (DDP) Brief.
https://www.intel.com/content/www/us/en/architecture-and-technology/
ethernet/dynamic-device-personalization-brief html. Last Accessed: 2023-03-17.

[22

[23

[24

[25

[26]

[27

[28

[29]

[33

[34

APNET 2023, June 29-30, 2023, Hong Kong, China

Intel. 2021. Intel® Memory Latency Checker v3.10. https://www.intel.
com/content/www/us/en/developer/articles/tool/intelr-memory-latency-
checkerhtml. Last Accessed: 2023-03-17.

Intel. 2023. DPDK: Data Plane Development Kit. https://www.dpdk.org/. Last
Accessed: 2023-03-17.

Intel. 2023. DPDK Generic Flow API Documentation. https://doc.dpdk.org/
guides/prog_guide/rte_flow.html. Last Accessed: 2023-03-17.

Intel. 2023. DPDK NVIDIA MLXS5 Ethernet Driver Documentation. https://doc.
dpdk.org/guides/nics/mlx5.html. Last Accessed: 2023-03-17.

Dugan Jon, Estabrook John, Ferbuson Jim, Gallatin Andrew, Gates Mark, Gibbs
Kevin, Hemminger Stephen, Jones Nathan, Qin Feng, Renker Gerrit, Tirumala
Ajay, and Warshavsky Alex. 2021. iPerf - The ultimate speed test tool for TCP,
UDP and SCTP. https://iperf.fr/. Last Accessed: 2023-03-17.

Donggun Kim, Sangkyu Baek, Jaehyuk Jang, and Daegyun Kim. 2021. High-Speed
Packetization for 5G Advanced. In 2021 IEEE Globecom Workshops (GC Wkshps).
IEEE, 1-6.

Robert MacDavid, Carmelo Cascone, Pingping Lin, Badhrinath Padmanabhan,
Ajay ThakuR, Larry Peterson, Jennifer Rexford, and Oguz Sunay. 2021. A P4-
Based 5G User Plane Function. In Proceedings of the ACM SIGCOMM Symposium
on SDN Research (SOSR). https://doi.org/10.1145/3482898.3483358

David Murray, Terry Koziniec, Kevin Lee, and Michael Dixon. 2012. Large MTUs
and Internet Performance. In Proceedings of the IEEE International Conference
on High Performance Switching and Routing. https://doi.org/10.1109/HPSR.2012.
6260832

Netronome. 2020. Agilio LX SmartNICs. https://www.netronome.com/media/
documents/PB_Agilio_LX_2x40GbE-7-20.pdf. Last Accessed: 2023-03-17.
NVIDIA. 2022. NVIDIA Connectx-6 Dx NIC. https://nvdam.widen.net/s/
qpszhmhpzt/networking-overal-dpu-datasheet-connectx-6-dx-smartnic-
1991450. Last Accessed: 2023-03-17.

Samsung Research. 2020. The Next Hyper-Connected Experience for
All. https://cdn.codeground.org/nsr/downloads/researchareas/20201201_6G_
Vision_web.pdf. Last Accessed: 2023-03-17.

David Salyers, Yingxin Jiang, Aaron Striegel, and Christian Poellabauer. 2007.
JumboGen: Dynamic Jumbo Frame Generation for Network Performance Scal-
ability. SIGCOMM Computer Communication Review 37, 5 (oct 2007), 53-64.
https://doi.org/10.1145/1290168.1290174

VdoCipher. 2021. What is Video Bandwidth? 720p, 1080p, GB Transfer Explained.
https://www.vdocipher.com/blog/video-bandwidth-explanation/. Last Accessed:
2023-03-17.

https://www.3gpp.org/DynaReport/22261.htm
https://www.3gpp.org/DynaReport/22261.htm
https://www.3gpp.org/DynaReport/37324.htm
https://www.3gpp.org/DynaReport/37324.htm
https://www.3gpp.org/DynaReport/38214.htm
https://www.3gpp.org/DynaReport/38214.htm
https://www.3gpp.org/DynaReport/38322.htm
https://www.3gpp.org/DynaReport/38323.htm
https://www.nextgalliance.org/wp-content/uploads/dlm_uploads/2022/05/Next_G_Alliance_6G_Applications_and_Use_Cases_7-1.pdf
https://www.nextgalliance.org/wp-content/uploads/dlm_uploads/2022/05/Next_G_Alliance_6G_Applications_and_Use_Cases_7-1.pdf
https://www.nextgalliance.org/wp-content/uploads/dlm_uploads/2022/05/Next_G_Alliance_6G_Applications_and_Use_Cases_7-1.pdf
https://spectrum.ieee.org/nanoclast/semiconductors/devices/what-globalfoundries-retreat-really-means
https://spectrum.ieee.org/nanoclast/semiconductors/devices/what-globalfoundries-retreat-really-means
https://doi.org/10.1145/3469393.3469400
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/3452296.3472888
https://doi.org/10.1145/3452296.3472888
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-series-switches/nexus9800-series-switches-ds.html
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-series-switches/nexus9800-series-switches-ds.html
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-series-switches/nexus9800-series-switches-ds.html
https://www.delltechnologies.com/asset/en-us/products/networking/technical-support/dell-powerswitch-z9664f-on-spec-sheet.pdf
https://www.delltechnologies.com/asset/en-us/products/networking/technical-support/dell-powerswitch-z9664f-on-spec-sheet.pdf
https://blog.westerndigital.com/cpu-bandwidth-the-worrisome-2020-trend/
https://blog.westerndigital.com/cpu-bandwidth-the-worrisome-2020-trend/
https://doi.org/10.1109/IEEESTD.1985.82837
https://doi.org/10.1109/IEEESTD.1985.82837
https://github.com/omec-project/upf
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-155.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-155.html
https://tools.ietf.org/html/rfc1191
https://tools.ietf.org/html/rfc6691
https://tools.ietf.org/html/rfc6691
https://www.intel.com/content/www/us/en/products/sku/218648/intel-tofino-2-12-8-tbps-20-stage-4-pipelines/specifications.html
https://www.intel.com/content/www/us/en/products/sku/218648/intel-tofino-2-12-8-tbps-20-stage-4-pipelines/specifications.html
https://www.intel.com/content/www/us/en/products/sku/218648/intel-tofino-2-12-8-tbps-20-stage-4-pipelines/specifications.html
https://www.intel.com/content/www/us/en/architecture-and-technology/ethernet/dynamic-device-personalization-brief.html
https://www.intel.com/content/www/us/en/architecture-and-technology/ethernet/dynamic-device-personalization-brief.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://www.dpdk.org/
https://doc.dpdk.org/guides/prog_guide/rte_flow.html
https://doc.dpdk.org/guides/prog_guide/rte_flow.html
https://doc.dpdk.org/guides/nics/mlx5.html
https://doc.dpdk.org/guides/nics/mlx5.html
https://iperf.fr/
https://doi.org/10.1145/3482898.3483358
https://doi.org/10.1109/HPSR.2012.6260832
https://doi.org/10.1109/HPSR.2012.6260832
https://www.netronome.com/media/documents/PB_Agilio_LX_2x40GbE-7-20.pdf
https://www.netronome.com/media/documents/PB_Agilio_LX_2x40GbE-7-20.pdf
https://nvdam.widen.net/s/qpszhmhpzt/networking-overal-dpu-datasheet-connectx-6-dx-smartnic-1991450
https://nvdam.widen.net/s/qpszhmhpzt/networking-overal-dpu-datasheet-connectx-6-dx-smartnic-1991450
https://nvdam.widen.net/s/qpszhmhpzt/networking-overal-dpu-datasheet-connectx-6-dx-smartnic-1991450
https://cdn.codeground.org/nsr/downloads/researchareas/20201201_6G_Vision_web.pdf
https://cdn.codeground.org/nsr/downloads/researchareas/20201201_6G_Vision_web.pdf
https://doi.org/10.1145/1290168.1290174
https://www.vdocipher.com/blog/video-bandwidth-explanation/

	Abstract
	1 Introduction
	2 Motivation
	2.1 Why Cellular Core Network?
	2.2 Is Large MTU Beneficial?

	3 Transparent Scaling of the MTU Size
	3.1 Dynamic MTU Translation
	3.2 Deployment Issues and Optimizations

	4 Preliminary Evaluation
	5 Future Direction
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

