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Abstract
Content-based naming (CBN) enables content sharing
across similar files by breaking files into position-
independent chunks and naming these chunks using
hashes of their contents. While a number of research
systems have recently used custom CBN approaches in-
ternally to good effect, there has not yet been any mecha-
nism to use CBN in a general-purpose way. In this paper,
we demonstrate a practical approach to applying CBN
without requiring disruptive changes to end systems.

We develop CZIP, a CBN compression scheme which
reduces data sizes by eliminating redundant chunks,
compresses chunks using existing schemes, and facili-
tates sharing within files, across files, and across ma-
chines by explicitly exposing CBN chunk hashes. CZIP-
aware caching systems can exploit the CBN information
to reduce storage space, reduce bandwidth consumption,
and increase performance, while content providers and
middleboxes can selectively encode their most suitable
content. We show that CZIP compares well to stand-
alone compression schemes, that a CBN cache for CZIP
is easily implemented, and that a CZIP-aware CDN pro-
duces significant benefits.

1 Introduction
Content-based naming (CBN) refers to a naming scheme
in which pieces of content are indexed by hashes over
their data. By splitting the content into smaller-sized
“chunks” and obtaining their chunk hashes using a one-
way cryptographic hash function (e.g., MD5, SHA-1),
any content can be represented as a list of chunk hashes.
The main goal behind the scheme is to reduce storage
space or network bandwidth consumption by eliminat-
ing redundant chunks. Redundant chunks can be found
within a single file, across files (such as snapshots of the
same file over time, or collections of files), or even across
machines. These latter two scenarios require building a
“CBN cache,” which is a cache indexed by chunk hashes.

One of the main enablers of variable-sized chunk-
ing for CBN is the Rabin fingerprinting method,
which breaks a stream of data into position-independent
chunks, allowing similar content to be detected even
when parts of files differ [20]. A number of research
systems have been developed that use CBN internally,
which range from distributed file systems [2, 13, 29] and

Web caching [3, 12, 21] to a cross-application transfer
service architecture [28]. The commercial sector has sys-
tems which apply the same concepts to disk blocks [8],
file backup [6], and WAN-link accelerators [22]. Though
the use of CBN has been demonstrated in both the re-
search and commercial sectors, there remains no easy
way of applying the concept in practice without inva-
sively changing the target platform, or designing the plat-
form with CBN integration from the start.

Our goal in this work is to develop a file format and
system that allows users to opportunistically deploy CBN
while keeping their current systems intact. For exam-
ple, a system employing CBN could reduce the memory
footprint of Linux distribution mirrors by eliminating re-
dundant data, since the same content is served as a DVD
ISO image as well as multiple CD ISO images. At the
same time, one may not want less suitable formats (un-
related RPMs or text files which rarely share common
chunks among them) to be served from the CBN cache,
because that would only increase the overhead with no
real gain. Another similar case is transferring multiple
but slightly different virtual machine (VM) images with
the same base operating system from a central location
(e.g., the office) to one or more destinations (e.g., home
machines or an off-site facility). With typical VM im-
age sizes ranging from many hundreds of MBs to a few
GBs, placing a CBN chunk cache near the destination
can help reduce a significant amount of network band-
width by only transferring the difference after the first
VM image. If the updated images are transferred in each
direction when the user commutes to/from the office, the
CBN can cause just the updates to be sent.

In this paper, we consider how to selectively employ
CBN without requiring any support from the underly-
ing systems. We propose a generic compression scheme
based on CBN called CZIP which provides chunking,
naming, and compression, allowing CZIP-aware systems
to eliminate redundant chunks across files. CZIP identi-
fies unique chunks in the input file (or stream), and then
compresses the chunk by existing compression methods,
such as GZIP or BZIP2. CZIP exposes chunk content
hashes in the header, and CZIP-aware systems can easily
recognize the content and exploit CBN caching just by
reading the header information.

This approach provides an appealing alternative to de-
signing systems around CBN, and provides some advan-



tages: (a) users or applications can better choose the set
of content for CBN encoding without changing the ex-
isting environment, (b) because the file format is generic
and independent of any particular system, different types
of CBN caches can be utilized without sacrificing trans-
parency, (c) even without a CBN cache, the compres-
sion scheme itself greatly reduces the content size where
chunk commonality exists, and is comparable to other
compression schemes in other cases.

We provide some examples of these benefits later in
this paper, including the following highlights. In creat-
ing mirror servers for the Linux Fedora Core 6 distribu-
tion, CZIP reduces the data volume by a factor of 21-
25 more than GZIP or BZIP2. For this kind of mirror,
our server-side CBN cache provides a dramatic improve-
ment in throughput by eliminating redundant disk reads
and minimizing the memory footprint. We also integrate
CBN support into the CoBlitz large-file content distribu-
tion network (CDN) [15], and show that it reduces the
bandwidth consumption at the origin server by a factor
of four, with no modification of the server or the client.

The rest of this paper is organized as follows: we pro-
vide some motivating examples for CBN and the CZIP
format in Section 2. We then provide details about the
design of CZIP in Section 3, and describe some typical
deployment scenarios in Section 4. We perform some ex-
periments on CZIP’s effectiveness on different data types
in Section 5, and evaluate the performance of two CZIP-
augmented systems in Section 6. Finally, we discuss re-
lated work in Section 7 and then conclude.

2 Motivation
To illustrate the benefits of a common CBN-enabling for-
mat, we discuss a few candidate scenarios below. All of
these examples are from systems we (and our colleagues)
have built or are building at the moment, so an approach
like CZIP, rather than just being theoretically interesting,
actually stands to provide us with practical benefits.

2.1 Software Distribution
Software distribution over the network has been gaining
popularity, especially as broadband penetration has in-
creased, making download times more reasonable. Linux
distributions are just one example of these kinds of sys-
tems, with popular projects like the Fedora Core distri-
bution having over 100 mirror sites1. However, as users
come to expect more capabilities, features, and packages
bundled with the OS, the download sizes have increased,
and the Fedora Core 6 distribution spans five CD-ROM
images or one DVD-ROM image, at a total size of 3.3
GB. Since users may desire one format over another, any
popular mirror site must keep both, requiring over 6 GB

1http://fedora.redhat.com/download/mirrors.html

of space for just a single architecture. While this disk
space is a trivial cost, the real problem is when this data
is being served – it is larger than the physical memory
of most systems, so it causes heavy disk access. The Fe-
dora Core project has also been providing images for the
64-bit x86 architecture since the release of Fedora Core
2, and PowerPC since Fedora Core 4. While the 64-bit
x86 extensions were originally available only in higher-
end processors, their migration down the hierarchy to
lower-end machines has also increased the demand for
the x86/64 Fedora Core distribution.

Even if a mirror site provided only the two x86 dis-
tributions in both DVD and CD formats, the total size is
over 12 GB. Unfortunately, this figure exceeds the phys-
ical memory size of most servers. Releases of new Fe-
dora Core distributions tend to cause flash crowds – our
own CoBlitz large-file distribution service experienced
peak downloads rates of over 1.4 Gbps aggregate, and
sustained rates over 1.2 Gbps2. In these scenarios, thou-
sands of simultaneous users are trying to download from
mirror sites, and between their sheer numbers, varying
download rates, and different start times, virtually all
parts of all of the files will be in demand simultaneously,
causing significant memory pressure. Some popular mir-
ror sites were unable to serve at their peak capacity due
to the memory thrashing effects. One mirror site oper-
ator with 2 Gbps of bandwidth was only able to serve
500 Mbps since his system had only 2 GB of physical
memory and was heavily thrashing3.

The reason that CBN is important in these scenarios
is because much redundant data exists, both across me-
dia formats (CD vs DVD) as well as across distributions
for different architectures (x86 vs x86/64). The reason
for the former is simple – the same files are simply being
rearranged and placed on media of different sizes. The
reason to expect similarity across architectures is that not
all of the files in any distribution are executables. So,
while the executable files may have virtually no simi-
lar chunks across different architectures, all of the sup-
port files, including documentation (PDFs, HTML pages,
GIF and JPEG images, etc.) will likely be the same, as
will many of the program resource files (configuration
files, skins/textures, templates, sample files, etc.). We
can expect savings at both of these levels, driving down
the memory footprint required for serving multiple archi-
tectures. In an ideal scenario, we would expect no over-
head for serving both the CD and DVD images, and each
additional architecture would only expand the memory
requirements by the size of the executable files.

2http://codeen.cs.princeton.edu/coblitz/
3mirror-list-d@redhat.com, Oct 26, 2006



2.2 Virtual Machine Image Mobility

Another area where large amounts of similar content are
expected to occur is in the handling of virtual machine
images. While virtual machines have been popular for
server consolidation and management, they are also be-
ing explored for providing mobility and management. In
the management scenario, VMWare has created a library
of “appliances,” pre-configured VM images for certain
tasks4. Most of these images will be very similar, since
they use the same base operating system.

In the mobility area, virtual machines are being used
to transport user environments. Rather than having users
work on laptops that they take with them, this approach
relies on servers that keep a virtual machine image of
the user’s environment, which can be moved to whatever
machine the user has available. In this way, users are not
tethered to any particular physical machine even if they
may use the same office and home machines repeatedly
in practice. This work has been explored in the Internet
Suspend/Resume (ISR) Project [25].

In such an environment, we would expect three
sources of similar content – common chunks between an
image and the same image at a different point in time,
common chunks across images of the same or similar
operating systems, and common chunks within an im-
age. While the first two sources are easy enough to un-
derstand, the last source can arise from practices such
as page-level granularity for copy-on-write – multiple
instances of the same program may have only differ-
ences in their globals and heap, but these differences
would have required duplicating the pages where they re-
side. By eliminating redundant content from all of these
sources, we can expect faster time to download/upload
image snapshots, as well as less memory pressure on the
machine serving the images. While the ISR project has
an accompanying content-addressable storage system,
it uses fixed-size chunks in the range of 4-16KB [14],
making it likely to only find common page-aligned con-
tent, such as executables. However, program data, etc.,
which may be allocated in slightly different portions
of memory from image to image, may be missed even
when commonality is high. Using a more sophisticated
CBN approach is likely to find more commonality, and
to increase the benefits from redundancy elimination.
We note that the ISR project intentionally chose fixed-
size chunks due to concerns about start-up times using
variable-sized chunks. Later in the paper, we discuss
what features the CZIP format has to support these kinds
of environments efficiently.

4http://www.vmware.com/vmtn/appliances/directory/

2.3 Uncacheable Web Content
Web proxy caches have been the focus of much research,
and the increasing capacities of disk and physical mem-
ory now enable proxies to store and index large data vol-
umes, and to achieve high cache hit rates limited only by
the HTTP-specified cacheability of the data stream [24].
However, even when content providers specify the data
should not be cached, it may be the case that the data
is slowly changing, and amenable to caching. For ex-
ample, most news sites are only updated a handful of
times per day, and even the updates leave most of the
page the same – only a few articles on a page are likely to
change during an update, with the rest of the page staying
the same. Even sites with user-editable content, such as
Wikipedia or bulletin boards, are unlikely to completely
change from edit to edit.

In these scenarios, a CBN scheme can exploit the
slowly-changing nature of the data to reduce bandwidth
consumption, whereas a standard HTTP proxy would be
prevented from caching the content at all. The prohibi-
tions on caching are specified by the content providers
via HTTP headers returned with the request. While
providers can benefit from reduced bandwidth consump-
tion when users cache content, enabling caching for these
kinds of dynamically-generated content is problematic –
providers often do not know when the next modification
will occur, so allowing content to be cached would result
in users seeing stale versions of the page.

A CBN-aware cache can work with an HTTP proxy
to share responsibilities, since each is better suited for
certain portions of the workload. For example, when an
HTTP proxy is allowed to cache content, it need not con-
tact the origin server during the caching period. Only
when the content expires and a client requests it does
the proxy need to contact the server to re-validate. The
CBN cache, in contrast, must always contact the origin
server when fetching dynamic content, but it may be able
to avoid actually downloading the data if it is found to
have not changed. A similar approach has been proposed
at the router level [26], and works without any explicit
HTTP-level cooperation. Later in the paper, we will dis-
cuss why exposing HTTP-level details can help optimize
these kinds of transfers, and how an explicit CZIP-aware
proxy can take advantage of the extra information not
available at the router level.

3 Design & Implementation
CZIP is conceptually a very simple compression format
that detects and eliminates redundant chunks in the input
file or stream. It exposes each chunk’s information in the
header of the output file and compresses the chunk data
itself using existing compression schemes such as GZIP
or BZIP2. The overall format is shown in Figure 1. Be-
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Figure 1: CZIP File format: The CZIP encoder creates the
chunk index structures in the header and stores only unique
chunks in the body. The stored chunk is compressed and con-
vergently encrypted, if requested.

low, we first describe the various fields, and then provide
a more detailed rationale for the design of the file format.

3.1 Header Format
The CZIP header consists of two parts – a fixed-size
header that describes the overall file, and then a variable-
sized header that contains the chunk information. The
header is designed to be efficient and flexible, allowing
applications to download what they need, and to make
CZIP processing as efficient as possible. At the same
time, it is designed to allow random access, even when
chunk sizes are unpredictable. The specific fields of the
header are:

• Magic Cookie – just a well-known value used to
identify the CZIP format

• Version – which version of CZIP is used, for future
expansion

• Footer – does this file use a footer instead of a
header. If this field is set, the chunk array and real
header occurs at the end of the file, not the head.
The rationale is described below.

• Sizes– sizes of original data, total CZIP file size,
and total header size.

• Hash Format – which hash function is being used,
such as MD5, SHA-1, etc.

• Compression Format – which compression
scheme is used, such as GZIP, BZIP2, etc.

• Chunk Hash Size– size of hash values in chunk
array and file hashes, used to calculate positions in
chunk hash array

• Encrypt – encryption schemes used for convergent
encryption, such as DES, AES, etc. (see below)

• Num Chunks – number of chunks in the file

• Header CRC – CRC value over total header, used
to detect corruption

• File Hashes– hash value over original and CZIP
files, used to detect corruption

• Hash Array Pointer – the offset of the start of the
chunk hash array, mostly used when the file has a
footer instead of a header. Otherwise, finding the
start of the hash array would be problematic.

This fixed-size header is followed by an array of per-
chunk headers. These contain information about each
chunk, and are designed to allow easy access.

• Chunk Sizes– original and compressed size of the
chunk

• Offsets– locations of this chunk in the original and
CZIP formats

• Hash Values– hash values for the original and pro-
cessed data in this chunk

3.2 Format Rationale
The CZIP format is designed to be easily usable at sev-
eral levels – including applications that need to just get
general data about the file, applications that need to pro-
cess the entire file, and applications that need to ran-
domly access the file. It is also designed to be relatively
easy to generate, given the constraints inherent in com-
pressing a file using CBN. Some of the considerations
involved are described below:

Planning Tools – Some tools may not care about
the exact data in a CZIP file, but may be interested in
knowing how much space the decompressed file requires.
These tools could read just the fixed-size header to get
this information.

Random Access– If a CZIP file is being used to
represent a file with sparse access, programs need only
read the full header to get the array of chunk headers.
Since the offsets in the original file are recorded, a bi-
nary search of the chunk header array can be performed
quickly, without the need to calculate offsets by adding
all preceding chunk sizes.

Streamability – For most applications, having the file
summary and chunk array information at the head of the
file is the most useful. However, when the CZIP file is
to be streamed as it is created, having all of the data in
the header would require a full pass over the file, which
would require buffering/creating the entire CZIP file be-
fore sending it. In this scenario, the “Footer” flag can be
set, and any filled values in the file’s header are viewed
as advisory in nature. When a footer is used, the arrange-
ment of the CZIP file is as follows: advisory header,



chunks, chunk hash array, file hashes, fixed-size header.
In this manner, the fixed-sized header can still be found
quickly when the file is retrieved from storage.

Creation Flexibility – If a variable-sized chunking
scheme is used, the exact number of chunks may not
be known in advance, but an approximate number can
be used. If the file is being written to disk as it is cre-
ated, space can be left after the chunk hash array to al-
low some extra space beyond the expected number of
chunks. Since the per-chunk information specifies offset
in the file, actual chunk data does not need to immedi-
ately follow the end of the chunk hash array. Otherwise,
the creation process would have to create the header file
and compress chunks separately, and then merge them.
By allowing extra space between the array and the start
of the chunks, the output file only has to be created once.
Obviously, if footers are being used, this approach is not
needed.

Encryption – A convergent encryption scheme (us-
ing DES or AES) may be applied to each chunk. Con-
vergent encryption encrypts each chunk with its content
hash as an encryption key so that the encoded chunk can
be shared among authorized users [7]. The keys, which
are the original content hashes, are again encrypted by
a public cryptographic algorithm (such as RSA) and de-
livered to the authorized users. The default methods in
CZIP are SHA-1 for hashing, GZIP for compression, and
no encryption for the chunk content.

Integrity – The CZIP format has several mechanisms
for integrity. The chunk content hash is calculated after
compression and encryption are applied to the original
content. This allows applications to check the integrity
of a CZIP file without decompressing it.

3.3 Chunking Specifics
CZIP supports two chunking methods: fixed and
variable-sized chunking. Fixed-sized chunking is sim-
plest but if an update causes content to get shifted
slightly, all previously-detected chunks after the modifi-
cation point would become useless. To address the prob-
lem, the Rabin fingerprinting method is often used. Ra-
bin’s fingerprints use a random polynomial called a Ra-
bin function withn consecutive bytes as input. A chunk
boundary is determined when the function’s output value
moduloaverage chunk size, M , is equal to a predefined
value,K (K is an integer,0 ≤ K < M ). SayM is 32
KB, andK is 17. Because the output values moduloM

are well distributed over [0..215-1], the probability of the
output value being 17 is close to2−15, which means the
chunk boundary is formed every 32 KB on average when
the Rabin function is evaluated at each byte. One advan-
tage of Rabin’s fingerprints is that even if the content is
modified, that does not affect the chunking boundary be-
yond the modified chunk and its neighbors. Thus, most

of the previously detected chunks can be reused regard-
less of local updates. One drawback is that the chunk size
is variable, making it harder to know in advance exactly
how many chunks a given piece of content produces.

By default, CZIP uses Rabin fingerprinting with a 32
KB average chunk size and GZIP compression, but these
parameters can be adjusted by command-line options.
For most of our workloads, 32 KB is small enough to
expose most chunk commonalities and big enough to
fully utilize the network socket buffers. GZIP, the de-
fault chunk compression scheme used by CZIP, finds re-
dundant strings within a 32 KB sliding window [16], so a
larger chunk size may not produce significant extra com-
pression from GZIP.

4 Deployment Options
The overall goal of CZIP is to recognize the value
of CBN by proposing an easily-handled format that
provides a migration path from current compression
schemes to content-based naming without requiring in-
vasive changes or significant system redesign. While ba-
sic support for the CZIP format provides its own bene-
fits, the design of CZIP can easily enable other benefits
when used with infrastructure that is CBN-aware. In this
section, we describe some deployment scenarios to max-
imize the benefits from CZIP. We examine what can be
obtained with a CZIP-aware server, a CZIP-aware client,
or both.

In this discussion, we focus on deployment using
HTTP, but any appropriate protocol could be used. In
particular, FTP and RSYNC servers would also be good
candidates for CZIP support. Our focus on HTTP is due
to its widespread adoption, and our assumption that more
people know its protocol details than other protocols.

4.1 CZIP-Aware Server
A CZIP-aware server makes more efficient use of its
memory when serving high-similarity content by using
a CBN-based cache to reduce its working set size. In
this scenario, shown in Figure 2, content providers dis-
tribute similar files encoded using CZIP, and their clients
decompress the downloaded files like they would han-
dle any other compressed formats. The CZIP files re-
ceived by the client are fully self-contained. However,
on the server, a chunk cache is maintained that is used
across files, reducing the working set size when simi-
lar files are being served. Whenever a CZIP-file request
is received, the server reads the chunk index structures
from the requested file’s header, and checks to see if the
chunks are already loaded in the CBN cache. Any cache
misses are served from the requested file, with the CBN
cache also receiving the data. In this manner, the server
avoids polluting main memory with redundant data, and
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Figure 2:A CZIP-aware server needs to read only the chunk
index structures and then the missing chunk C to serve File2.cz
to the client. Chunk A and B are already in the server’s CBN
cache from a previous fetch of File1.cz.

the server’s effective working set size is the union of all
the unique chunks in the CZIP’ed files being served.

Since the data stream received from the server is just
another file, no changes are required on any intermediary
devices or at the client in order to download the CZIP
file. Obviously, the client must be able to uncompress
the CZIP format, which can be achieved via stand-alone
programs, as a browser plug-in, as a helper application,
or even with integrated browser support, as is done with
GZIP’ed objects.

If this support is not feasible at the client side, the
server could un-CZIP the data as it is being sent to the
client, or even re-encode it using GZIP or ZLIB/deflate
depending on what the client specifies in the HTTP
“Accept-Encoding” header. A clever system may be able
to take GZIP-encoded chunks from the CZIP file and
serve them to GZIP-capable clients without a full decom-
pression step, but this approach requires knowing some
low-level details of the ZLIB stream format, and is be-
yond the scope of this paper. In any case, it is easy to see
that a CZIP-aware server could still obtain memory foot-
print benefits even with a completely unmodified client.

4.2 CZIP-Aware Client
If the server is only a standard Web server with no spe-
cial support for CZIP, a CZIP-aware client can still in-
dependently exploit CZIP-encoded files using only the
standard HTTP protocol. The advantage for the client
is lower bandwidth consumption and faster download
times. In this scenario, one or more clients maintain
a CBN cache that stores recently-downloaded chunks.
When clients want to download a CZIP-encoded file,
they ask for only the CZIP headers using the HTTP byte-
range support that has been present in Apache and IIS
since 1996. The clients ask for at least as many bytes as
the fixed-size header, and if the response does not contain
the full chunk hash array, another request can be sent to
get the rest of the variable-sized header. Note that in the
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(Client−side)
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File1.cz GET /File2.cz
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Figure 3: A CZIP-aware proxy first fetches the header of
File2.cz, and downloads only chunk C. The chunk request in-
cludes the chunk’s byte-range and its content hash. We assume
that another client previously downloaded File1.cz.

unlikely event that the CZIP files are stored with footers,
in streaming order, the byte-range support can also ask
for bytes at the end of the file.

Once it has the header, the client knows the chunk
hashes, so it can try to fetch the chunks from its local
CBN cache. For any chunks it does not have, the chunk
hash array also contains the byte positions of the chunks
within the CZIP file, so the client can use the byte-range
support to just ask for specific portions of the file contain-
ing the chunks it needs. These chunks are also inserted
into the CBN cache.

Alternatively, this level of support could be added to
a client-side proxy server, as shown in Figure 3 so that
clients themselves do not have to be aware of the CZIP
format. If the connection between the client and the
proxy is faster than the speed of the wide-area network,
the download will still be faster than if the client had con-
tacted the server directly.

4.3 CZIP-Awareness at Both Endpoints
The greatest benefit using CZIP arises when both end-
points are CZIP-aware and utilize CBN caching. In this
scenario, the client’s first request to the server retrieves
the full CZIP header for the file. After consulting with its
local CBN cache to determine which chunks it does not
have, the client contacts the server to request the chunks
by their chunk hash information instead of requesting
range requests of the CZIP-encoded file. In this manner,
both the client and server are only dealing with chunks
rather than files when serving the body of the request,
reducing both bandwidth consumption and the server’s
working set. With persistent connections and request
pipelining, any gaps between serving individual chunks
can be minimized.

This scenario requires more infrastructural change
than the two previous scenarios, but even these changes
could be incorporated into proxy servers. Proxy servers
are often deployed as “server accelerators” or “reverse
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Orig CZIP GZIP BZIP2
Size Size Time

plain gzip bzip2 plain gzip bzip2 Size Time Size Time
FC6 (i386) 6.65 3.27 3.18 3.23 428 765 2004 6.46 846 6.47 3964
Wikipedia 7.94 7.94 2.67 2.50 656 1419 3079 2.45 976 1.90 3151
FC6 (all) 49.73 20.27 19.63 19.86 323 5194 12767 48.34 6424 48.53 29004

Table 1:Compression Performance. All sizes in GB, and all times in seconds.

proxies,” where the content provider will have incoming
requests pass through a proxy server before reaching the
actual Web server. This approach is used to offload re-
quests from the Web server, since the proxy may be more
efficient at serving static content. In this scenario, CZIP
support merely needs to be added to the proxy server,
and when a CZIP-enabled client-side proxy realizes it is
communicating with a CZIP-enabled server-side proxy,
it can use the CZIP-aware protocols for transfers. In this
manner, the changes are more localized than requiring
modifications to all Web servers.

5 Compressibility Experiments

In this section, we perform a number of experiments to
demonstrate the effectiveness and performance of CZIP
on a range of data types, focused on the scenarios we
described in Section 2. CZIP reduces data volume by
first finding and eliminating redundant data, and then
passing the remaining data through existing compression
schemes. Not surprisingly, CZIP is most useful where
a high level of chunk commonality is expected, but its
compression performance does not degrade much even
when there is little commonality because each chunk
is individually compressed. The experiments described
below compare CZIP’s compression performance with
GZIP and BZIP2 in terms of compression ratio and
speed.

5.1 Linux Distributions

Our first experiment examines CZIP in an environment
where we can expect significant data commonality, serv-
ing the Fedora Core Linux distribution [17] across its
three CPU architectures (i386, x8684 and ppc) and two
media formats, DVD and CD ISOs. The byte count for
just the 32-bit i386 architecture is 6.7 GB, while all Fe-
dora Core 6 (FC6) ISOs together is about 22 GB. The
full FC6 mirror, including all source RPMs, is 49.7 GB.

We prepare two sets of files, just the i386 DVD/CD
ISOs, and all FC6 mirrored files, including the source
RPMs. Wetar each set into a file, and apply CZIP, GZIP
and BZIP2 each on a machine with a 2.8 GHz Pentium D
processor and 2 GB of memory. Each file is compressed
with just CZIP alone (no chunk compression), CZIP used
with GZIP or BZIP2 as a per-chunk compressor, and then
GZIP and BZIP2 used alone as standalone compressors.
In all cases, whether running standalone or in conjunc-
tion with CZIP, the GZIP and BZIP2 compressors use
their default compression parameters.

Figure 4 shows the data compression ratios, which are
calculated as compressed size/original size. More details
are shown in Table 1. The results show that all of the
CZIP variants, even with no chunk-level compression,
yield files less than half the size of GZIP and BZIP2,
which show virtually no compression. The CZIP results
are not surprising, because the DVD ISO contains all the
data of the CD ISOs, and the ISOs again contain all the
RPM contents. The CZIP’ed-ISO file (3.17 GB) is actu-
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Figure 5:Content overlap over similar Xen Linux VMs

ally smaller than just one DVD ISO (3.28 GB) because of
the compression of each chunk’s data. On the other hand,
GZIP and BZIP2 do not find the chunk-level common-
ality across the ISOs, nor can they compress the ISOs
much further because most of their contents are already
compressed. By the actual byte counts, CZIP saves 3.3
GB and 28.7 GB more disk space for each FC file than
the other schemes. The 32KB chunk size performs well
enough – dropping to 4KB using CZIP alone only com-
presses the file to 19.07 GB from 20.27 GB. The smaller
chunk size does provide a small speed boost, reducing
compression time to 2583 seconds from 3231, presum-
ably due to processor-cache effects.

5.2 Wikipedia

Our next test involves a large set of human-generated
content, an offline version of the Wikipedia [32] database
containing all of its pages, which is intended for proxy-
ing in regions where bandwidth is limited. We down-
load the latest version of the database file (produced on
11/30/2006), and tested each compression scheme on it.

The data compression ratio in Figure 4 shows that
CZIP with no compression performs the worst, which
is in contrast to the Fedora Core cases. The Wikipedia
database file shows almost no chunk-level commonal-
ity (< 0.001%) using the default average chunk size of
32 KB, while it is easily compressed with other meth-
ods. This file presents a worst case scenario for CZIP,
since the chunking scheme presents smaller pieces of
data for the individual compressors. The difference for
CZIP+GZIP versus GZIP alone is an additional 2.8%,
since GZIP uses a relatively small (32KB) window.
BZIP2, however, uses a much larger compression win-
dow (900KB), and is able to gain an additional 7.6% over
the combination of CZIP+BZIP2, since CZIP produces
chunks smaller than BZIP2’s window.
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5.3 Virtual Machine Images

Handling multiple virtual machine (VM) images for the
same operating system is another area where much cross-
file commonality would be expected. We investigate this
scenario using two sets of images – one that is server
oriented, and another reflecting client machines.

The server test creates three Xen [4]-based Linux
VM images: “Base,” a minimum-functionality (with no
redundant daemons) Fedora Core 4 image, “Apache,”
which adds the Apache Web server to the base image,
and “Both,” which adds the MySQL database server to
Apache. Each image is created on a 2 GB file-based disk
image, but the real content sizes, measured by unique
chunks, are 734.8, 782.3 and 790.8 MB, respectively.

In Figure 5, we compare the content overlap ratio be-
tween Base and Apache, and between Apache and Both
over different chunk sizes and chunking methods. We see
more content overlapping with smaller chunks, because
the granularity of comparison gets smaller. The perfor-
mance of fixed-size chunking degrades significantly after
4 KB, the hardware page size. However, variable chunk-
ing degrades much more slowly and flattens after 16 KB.
Using Rabin’s fingerprinting method, we detect 73-86%
of redundancy regardless of chunk sizes.

For the client test, we create five identical Xen Linux
VMs (EC1-EC5) configured with a standard engineering
computing (EC) for a large technology company. For
three weeks, five different engineers extensively used the
VMs for various tasks in the hardware design process.
The image size is 4 GB each, but the real content per VM
is 2.2 GB. In Figure 6, we show the overlap between two
pairs of images, EC1 and EC2, and EC3 and EC4 (com-
parison with other pairs is similar). CZIP finds more than
90% redundancy between all pairs of VMs, and some-
times as much as 98%. Interestingly, fixed-size chunking
degrades much less in this test, and even slightly outper-
forms Rabin fingerprinting. The reason is because most
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of the content did not change over the three weeks, and
if the layout of the content is aligned with multiples of
the fixed chunk size, fixed-sized chunking can find more
commonality.

5.4 Dynamic Web Pages

Our final compressibility test examines the commonality
between multiple snapshots of dynamic Web sites over
time. We download the front pages of Google News,
CNN, Slashdot, Digg.com, Fark.com and the New York
Times (NYT) every 10 minutes for 18 days. All of
these sites mark their front pages uncacheable with “no-
cache,” “no-store,” or “private” in the “Cache-Control”
response header, which would not only render shared
HTTP proxy caches useless, but would also prevent
browser caching in most of their cases. The data vol-
umes for the HTML alone range from 120-360 MB for
the entire period.

We run CZIP on each snapshot, and for each site, we
compare the chunk overlaps on every pair of snapshots
taken 10 minutes apart. Figure 7 shows the average con-
tent overlap during the 18-day period for each site, using
CZIP runs with varying chunk sizes. As in the previ-
ous section, we see that the commonality decreases as
the chunk size increases, but we see 24% to 90% aver-
age redundancy for 1-KB chunks. The particular pattern
is also interesting – Google News shows the worst sav-
ings at the 4KB chunk size, since most of the blurbs are
small and their positions are updated frequently. The en-
tertainment site Fark.com uses much smaller blurbs and
updates roughly 50 times per day, but shows high com-
monality, due to the blurbs getting added and removed
from the front page in FIFO order. As such, the Rabin
fingerprinting approach can still work with the shifted
content. The per-site savings in bytes transferred using
CZIP-aware systems is shown in Figure 8.
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CZIP GZIP BZIP2
plain gzip bzip2

FC6 (i386) 130 169 1299 229 2021
Wikipedia 146 200 786 218 1167
FC6 (all) 1465 1865 10009 1708 14971

Table 2:Decompression Performance. All times in seconds.

5.5 Overheads

CZIP’s compression and decompression speed are
mostly comparable to GZIP and much better than BZIP2.
Tables 1 and 2 show the times taken for compressing and
decompressing FC6 and Wikipedia DB files. For the FC6
files, CZIP finishes 91 seconds (10.6%) and 1229 sec-
onds (19.1%) earlier than GZIP in compression because
it can avoid processing redundant chunks. But CZIP is
443 seconds (45.3%) slower than GZIP for the Wikipedia
DB file. This is due to CZIP’s chunking overhead and
redundant file access for temporarily saving intermediate
chunks before writing the header. Decompression is gen-
erally much faster than compression, and its performance
is usually bounded by the disk write speed. CZIP’s de-
compression speed is comparable to that of GZIP. In
comparison with BZIP2, CZIP is 2.2 to 5.6 times faster
in compression and 5.8 to 12 times faster in decompres-
sion, mostly due to BZIP2’s CPU-heavy reconstruction
process during decompression.

6 Performance Evaluation

In this section, we evaluate the performance benefits of
CZIP-aware systems in two contexts – a server-side CBN
cache, and CZIP integration with a content distribution
network (CDN). The CBN cache is implemented as a
module on the Apache Web Server, and the CDN sup-
port is integrated into the CoBlitz large-file CDN [15].
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(c) 300 clients

Figure 9:Client throughput distribution when downloading large ISOimage files

6.1 Server-Side CBN Cache
Our server-side CBN cache is evaluated for one of the de-
ployment scenarios that we described earlier in Section 2
– a software distribution mirror handling a data set larger
than its physical memory. In this scenario, the server
can easily experience thrashing, and have its throughput
bottlenecked by disk access performance. A server-side
CBN cache can help avoid unnecessary disk reads and
reduce the effective memory footprint of the server.

Our implementation consists of an Apache module
which handles a CZIP file request by parsing the file’s
header and fetching the chunks from a CBN cache server.
The CBN cache server is a user-level file chunk server on
the same machine that caches chunks indexed by CBN.
The module sends a chunk request with a file path, a
byte-range and a chunk content hash. The CBN cache
server finds the chunk in its cache or reads it from the file
system on cache misses. It can be configured to recheck
the chunk content hash for possible attacks or corrup-
tion. Because the CBN cache server is a separate pro-
cess, any CZIP-aware servers on the same machine can
benefit from the cache as well.

We use a server machine with a 2.8 GHz Pentium D
processor, 2 GB memory, and two Gigabit Ethernet net-
work interface cards (NICs). We compare Apache 1.3.37
with and without the CZIP module on a data set consist-
ing of a 1.5 GB file extracted from the Fedora Core 6
DVD ISO and three 0.5 GB files whose contents overlap
with the 1.5 GB file. This simulates the typical Linux
mirror setup with one DVD and many CD ISOs. To in-
clude aliasing effects, we duplicate the set and place one
copy in a different directory, raising the total content size
6 GB.

Our client workload is generated by six machines with
one Gigabit Ethernet NIC each, split across two LAN
switches. Each machine generates multiple simultaneous
requests to the server, and we simulate 100-300 clients
total. A new simulated client arrives on average every 3
seconds, up to the per-experiment client limit.

# of clients Avg Min Median 90%
100 33.45 16.72 30.12 46.00
100 (w/CBN) 75.69 49.52 62.48 117.76
200 24.11 11.92 21.28 36.72
200 (w/CBN) 53.23 29.20 41.68 83.36
300 19.14 8.96 15.84 32.04
300 (w/CBN) 40.30 18.64 29.44 67.60

Table 3:Per-client throughputs (in Mbps) for serving a large
data set with lots of commonality. We show the average, mini-
mum, median, and 90th percentiles.

Figure 9 shows the client throughput CDF for serv-
ing 100, 200, and 300 simultaneous clients. The CZIP-
enabled Apache outperforms the standard Apache by a
factor of 2.11 to 2.26 (mean), and 1.84 to 2.07 (me-
dian). The means are higher than the medians because
the CBN-cache case has a long tail – later requests do
not overlap with many of the previous requests, so they
compete less for the server’s CPU cycles and network
bandwidth. The CBN-cache case performs much bet-
ter with physical memory cache hits than the non-cache
case, whose throughput is bounded by the disk read bot-
tleneck. This is observable in all three graphs by notic-
ing that the horizontal gap between the two lines widens
beyond the 50th percentile. Another interesting obser-
vation is that the worst-case throughput with the CBN
cache beats 65% to 91% of non-cache throughputs.

The development effort for the components mentioned
above were relatively modest. The Apache module con-
sists of 700 lines of C, of which 235 are semicolon-
containing. The CBN cache server is larger, with 613
semicolon lines out of 2061 total. However, the total de-
velopment time for them was one week combined, and
it was performed by a first-year graduate student. We
believe that future development can leverage the effort
here, especially of the stand-alone CBN cache.
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Figure 10:Bandwidth Consumption at Origin Server: Plain-Co and CZIP-Co both use regular CoBlitz but Plain-Co downloads
original file while CZIP-Co downloads CZIP’ed file. CZIP-CC uses C-CoBlitz to download the CZIP’ed file.

6.2 CBN-Aware Content Distribution
To build a CBN-Aware Content Distribution Network
(CDN), we create C-CoBlitz by integrating CZIP support
into the CoBlitz CDN, a scalable large-file HTTP CDN
running on PlanetLab [15]. CoBlitz has been in produc-
tion for over two years, and serves roughly 1 TB per day,
with peaks as high as 5 TB/day and sustained bandwidth
rates in excess of 1.2 Gbps.

CoBlitz already tries to reduce origin server band-
width consumption, even when hundreds of edge proxies
are serving multi-GB files. Rather than fetching whole
files, CoBlitz nodes request and cache fixed-sized chunks
of a file from the origin server using HTTP byte-range
support. The nodes then cooperate with each other to re-
assemble the chunks in order and seamlessly serve the
file to unmodified Web clients. Since CoBlitz does not
examine the content of chunks, it does not identify re-
dundant content. By integrating CZIP into CoBlitz, we
can avoid fetching and storing redundant content, reduc-
ing origin server bandwidth consumption even further.

CBN cache integration with CoBlitz transparently pro-
vides the benefits described in Section 4.2 without any
modification of the client or the server. CoBlitz names
its fixed-size chunks using the original URL name and
byte-range information. To add CZIP support, we add
the content hash and chunk size to this name when han-
dling CZIP-format files. The CBN cache integration re-
quires only about 200 lines of new code.

The chunk naming scheme extends to the underly-
ing CoDeeN content distribution network [31] on which
CoBlitz is built. The benefit of this approach is that if
a given chunk is not found at a CoDeeN node, the re-
quest is served from the peer CoDeeN node responsible
for that given URL. The mapping of URLs to CoDeeN
nodes is performed using the HRW consistent hashing
scheme [27], so if a chunk is needed at several nodes, it

will likely be fetched from a peer CoDeeN node instead
of from the origin server.

To test how much bandwidth is saved using C-CoBlitz,
we have 100+ U.S. PlanetLab nodes simultaneously
download the first 100 MB and 50 MB of the Fedora
Core 5 DVD ISO from a server at Princeton. For the ori-
gin server, we use lighttpd [9] on a 2.8 GHz Pentium D
machine with 2 GB of memory. We download the 100
MB content first and then the 50MB content, for both
the original and CZIP’ed versions. Using CZIP reduces
the 100 MB and 50 MB files to 68.1 MB and 28.9 MB,
respectively.

Figure 10 compares the bandwidth consumption at the
origin server for the different schemes. Because the num-
ber of clients varies from 93 to 106 depending on the time
of the tests, we normalize the bandwidth consumption for
the 100-client case. Distributing the uncompressed 100
MB content to 100 nodes via regular CoBlitz consumes
388 MB of bandwidth at the origin server (3.8 copies of
original content) while the CZIP’ed content needs 273
MB, a 29.6% reduction from serving the original content.
This saving comes directly from the content size reduc-
tion by CZIP compression, and the same trend is seen in
the case of the 50 MB file as well, which is reduced by
49.7%. Serving the CZIP’ed 50 MB content through C-
CoBlitz shows the largest bandwidth reduction because
most chunks were already cached while downloading the
CZIP’ed 100 MB content. To serve the CZIP’ed file to
100 clients (2.9 GB of content or 5 GB uncompressed
content), C-CoBlitz requires only 24 MB of origin server
bandwidth, which is just 0.8% of the total size. Regular
CoBlitz requires 3.83 times (92 MB) more bandwidth.

The other interesting comparison in Figure 10 is the
bandwidth consumption drop from CZIP-CO (273MB)
to CZIP-CC (191MB). The difference here is that CZIP-
CO is just the CZIP’ed file being served over regular



CoBlitz, while CZIP-CC uses C-CoBlitz. Since this is
the first transfer of the file to all 100 clients, these results
should be the same, but C-CoBlitz still shows a 29.7%
drop in bandwidth consumption. The C-CoBlitz system
appears to be reducing the bandwidth burstiness and net-
work congestion compared to regular CoBlitz, trigger-
ing fewer retries and causing each fetched chunk to be
served to more peers. As a result, fewer nodes are fetch-
ing each chunk from the origin server, reducing the band-
width consumption further.

7 Related Work
The idea of exploiting chunk-level commonality has
been widely applied in many systems, but these tech-
niques have not been easily separable from the un-
derlying system. The earliest work of which we are
aware is the system proposed by Springet al. to elim-
inate the packet-level redundancy by recognizing identi-
cal portions in IP packets [26]. They assume synchro-
nized caches at both endpoint routers and detect iden-
tical chunks by finding anchors [10] in the packet and
expanding the region of same content from that point.
The packet is encoded with tokens representing the re-
peated strings in the cache. Because the approach is
independent of application-level protocols, it can offset
application-level caching, such as removing the redun-
dancy among the uncacheable HTTP responses. In CZIP,
we focus on separating the CBN techniques from the un-
derlying system, allowing us to provide similar benefits
using only user-level CBN caches.

Another system that appeared shortly thereafter was
LBFS [13], and was the first system taking advantage
of Rabin’s fingerprints to reduce bandwidth consump-
tion in a distributed file system. LBFS finds about 20%
redundancy in a 384 MB set of file data. Similar ideas
have since been applied in numerous other file or stor-
age back-up systems such as Farsite [1], Pastiche [5],
Venti [19], CASPER [29], and Shark [2]. File systems
are an attractive place to implement CBN caching be-
cause file access patterns often reveal significant redun-
dancy [23, 30]. However, the CBN support has been
built into these systems, making it more difficult to select
when it is appropriate, or to use it outside of the range of
tasks handled by the system.

Some systems have been built to reduce duplicate data
specifically in the context of the Web. Value-based Web
Caching (VBWC) [21] reduces redundant chunk transfer
on the Web by coordinating the browser’s CBN cache
and a client-side parent proxy. Its operation is simi-
lar to Spring’s work [26] except it is specific to HTTP.
They also describe a synchronization mechanism be-
tween these two caches. Duplicate Transfer Detection
(DTD) [12] adds a message digest in the HTTP response

header (without a message body), and allows the client to
search its CBN cache for the message body. Only in the
case of a cache miss does the client ask for the message
body – this is called the “pure-proceed” model. It is sim-
ilar to our client-only caching scenario in Section 4.2,
but the content hash is based on the whole file (except
for byte-range queries), which may make finding redun-
dancy across parts of files difficult. It does not require
cache synchronization as in VBWC, but at the cost of
an extra RTT delay for every cache miss. CZIP-based
requests can utilize partial content overlap but do not re-
quire an extra RTT even for client-side caching only.

Delta encoding has also been proposed for Web pages
that partially change [11]. In this general approach,
clients can specify what version of a page they have
cached when asking the server if the page has been up-
dated. The server can then send just the updated por-
tions rather than the whole page. While this approach
is well suited for static content that has a small set of
easily-identifiable versions, it is much harder to adapt
it for dynamic content, which can not be easily named
or tagged. The extra overhead on the server created a
higher barrier to adoption for this approach. CZIP-based
schemes would not have to remember specific states of
Web pages, since the chunks can come from any page
and be used in any other page. As a result, while a CZIP-
based approach may not produce deltas as small as other
approaches, it can find commonality across files with rel-
atively little server state.

More recently, a transparent transfer service archi-
tecture based on a CBN chunk cache has been pro-
posed [28]. It asks for a chunk hash array exchange be-
fore actual delivery, which is similar to the case in Sec-
tion 4.3. Our belief is that by making CZIP a standard
format, the benefits of this kind of compression can be
achieved end-to-end, instead of just by an enhanced sys-
tem in the middle. This approach would also let the end-
points select when to use it, avoiding the overhead when
serving content with little data commonality, like unre-
lated compressed files [16].

Similarity-Enhanced Transfer (SET) [18] exploits
chunk-level similarity in downloading related files. It
finds relatively high chunk-level similarity in popular
music and video files. Much of the similarity comes
from files with the same content but with slightly differ-
ent metadata information in the header. In order to utilize
the similarity, SET proposes to maintain the CBN infor-
mation and chunk location in a DHT-like infrastructure
so that a SET-based downloader can easily find the chunk
location with a constant number of lookups. CZIP-aware
CoBlitz provides similar benefits without maintaining
separate mapping information since the chunk data itself
is cached with its metadata at the same location. This
approach avoids any possible staleness concerns.



8 Conclusion
Although content-based naming (CBN) has proven itself
useful in a variety of systems, there has been no general-
purpose tool to enable its use in a variety of systems that
were not designed with in mind from the start. In this
paper, we have shown a new compression format, CZIP,
which can be used to efficiently support CBN with rea-
sonable overheads in processing power and space con-
sumption. We have demonstrated that CZIP can iden-
tify and eliminate redundant data across a range of useful
scenarios, without being tied to any particular system.

CZIP provides a flexible combination of deployment
paths, not only providing benefits by itself, but also by
providing more benefits if CZIP-awareness is added to
the client, server, or both endpoints. We have described
how these deployment options can be implemented with-
out invasive changes to the endpoints. To support these
claims, we have implemented CZIP awareness in the
Apache Web Server, and have shown that integration
with a CBN cache reduces its memory footprint and
dramatically improves client throughput. We have also
added CZIP support to a deployed content distribution
network, and have shown that it reduces origin server
bandwidth consumption significantly.

We believe that this combination of flexibility, ease of
integration, and performance/consumption benefits will
make CZIP an attractive tool for those wishing to support
content-based naming or develop new systems using this
technique.
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