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Abstract
Scalable distribution of large files has been the area of
much research and commercial interest in the past few
years. In this paper, we describe the CoBlitz system,
which efficiently distributes large files using a content
distribution network (CDN) designed for HTTP. As a
result, CoBlitz is able to serve large files without re-
quiring any modifications to standard Web servers and
clients, making it an interesting option both for end users
as well as infrastructure services. Over the 18 months
that CoBlitz and its partner service, CoDeploy, have been
running on PlanetLab, we have had the opportunity to
observe its algorithms in practice, and to evolve its de-
sign. These changes stem not only from observations on
its use, but also from a better understanding of their be-
havior in real-world conditions. This utilitarian approach
has led us to better understand the effects of scale, peer-
ing policies, replication behavior, and congestion, giving
us new insights into how to better improve their perfor-
mance. With these changes, CoBlitz is able to deliver
in excess of 1 Gbps on PlanetLab, and to outperform a
range of systems, including research systems as well as
the widely-used BitTorrent.

1 Introduction
Many new content distribution networks (CDNs) have
recently been developed to focus on areas not generally
associated with “traditional” Web (HTTP) CDNs. These
systems often focus on distributing large files, especially
in flash crowd situations where a news story or software
release causes a spike in demand. These new approaches
break away from the “whole-file” data transfer model,
the common access pattern for Web content. Instead,
clients download pieces of the file (called chunks, blocks,
or objects) and exchange these chunks with each other to
form the complete file. The most widely used system of
this type is BitTorrent [12], while related research sys-
tems include Bullet [20], Shark [2], and FastReplica [9].

Using peer-to-peer systems makes sense when the
window of interest in the content is short, or when
the content provider cannot afford enough bandwidth or
CDN hosting costs. However, in other scenarios, a man-
aged CDN service may be an attractive option, espe-

cially for businesses that want to offload their bandwidth
but want more predictable performance. The problem
arises from the fact that HTTP CDNs have not tradition-
ally handled this kind of traffic, and are not optimized
for this workload. In an environment where objects av-
erage 10KB, and where whole-file access is dominant,
suddenly introducing objects in the range of hundreds of
megabytes may have undesirable consequences. For ex-
ample, CDN nodes commonly cache popular objects in
main memory to reduce disk access, so serving several
large files at once could evict thousands of small objects,
increasing their latency as they are reloaded from disk.

To address this problem, we have developed the
CoBlitz large file transfer service, which runs on top
of the CoDeeN content distribution network, an HTTP-
based CDN. This combination provides several bene-
fits: (a) using CoBlitz to serve large files is as simple
as changing its URL – no rehosting, extra copies, or ad-
ditional protocol support is required; (b) CoBlitz can op-
erate with unmodified clients, servers, and tools like curl
or wget, providing greater ease-of-use for users and for
developers of other services; (c) obtaining maximum per-
client performance does not require multiple clients to be
downloading simultaneously; and (d) even after an initial
burst of activity, the file stays cached in the CDN, provid-
ing latecomers with the cached copy.

From an operational standpoint, this approach of run-
ning a large-file transfer service on top of an HTTP con-
tent distribution network also has several benefits: (a)
given an existing CDN, the changes to support scalable
large-file transfer are small; (b) no dedicated resources
need to be devoted for the large-file service, allowing it
to be practical even if utilization is low or bursty; (c) the
algorithmic changes to efficiently support large files also
benefit smaller objects.

Over the 18 months that CoBlitz and its partner ser-
vice, CoDeploy, have been running on PlanetLab, we
have had the opportunity to observe its algorithms in
practice, and to evolve its design, both to reflect its ac-
tual use, and to better handle real-world conditions. This
utilitarian approach has given us a better understand-
ing of the effects of scale, peering policies, replication
behavior, and congestion, giving us new insights into
how to improve performance and reliability. With these



changes, CoBlitz is able to deliver in excess of 1 Gbps
on PlanetLab, and to outperform a range of systems, in-
cluding research systems as well as BitTorrent.

In this paper, we discuss what we have learned in the
process, and how the observations and feedback from
long-term deployment have shaped our system. We dis-
cuss how our algorithms have evolved, both to improve
performance and to cope with the scalability aspects of
our system. Some of these changes stem from observing
the real behavior of the system versus the abstract un-
derpinnings of our original algorithms, and others from
observing how our system operates when pushed to its
limits. We believe that our observations will be useful
for three classes of researchers: (a) those who are con-
sidering deploying scalable large-file transfer services;
(b) those trying to understand how to evaluate the per-
formance of such systems, and; (c) those who are trying
to capture salient features of real-world behavior in order
to improve the fidelity of simulators and emulators.

2 Background
In this section, we provide general information about
HTTP CDNs, the problems caused by large files, and the
history of CoBlitz and CoDeploy.

2.1 HTTP Content Distribution Networks
Content distribution networks relieve Web congestion by
replicating content on geographically-distributedservers.
To provide load balancing and to reduce the number
of objects served by each node, they use partitioning
schemes, such as consistent hashing [17], to assign ob-
jects to nodes. CDN nodes tend to be modified proxy
servers that fetch files on demand and cache them as
needed. Partitioning reduces the number of nodes that
need to fetch each object from the origin servers (or other
CDN nodes), allowing the nodes to cache more objects
in main memory, eliminating disk access latency and im-
proving throughput.

In this environment, serving large files can cause sev-
eral problems. Loading a large file from disk can tem-
porarily evict several thousand small files from the in-
memory cache, reducing the proxy’s effectiveness. Pop-
ular large files can stay in the main memory for a longer
period, making the effects more pronounced. To get a
sense of the performance loss that can occur, one can
examine results from the Proxy Cacheoffs [25], which
show that the same proxies, when operating as “Web ac-
celerators,” can handle 3-6 times the request rate than
operating in “forward mode,” with much larger working
sets. So, if a CDN node suddenly starts serving a data
set that exceeds its physical memory, its performance
will drop dramatically, and latency rises sharply. Bruce
Maggs, Akamai’s VP of Research, states:

“Memory pressure is a concern for CDN developers,
because for optimal latency, we want to ensure that
the tens of thousands of popular objects served by
each node stay in the main memory. Especially in
environments where caches are deployed inside the
ISP, any increase in latency caused by objects being
fetched from disk would be a noticeable degrada-
tion. In these environments, whole-file caching of
large files would be a concern [21].”

Akamai has a service called EdgeSuite Net Storage,
where large files reside in specialized replicated storage,
and are served to clients via overlay routing [1]. We be-
lieve that this service demonstrates that large files are a
qualitatively different problem for CDNs.

2.2 Large-file Systems
As a result of these problems and other concerns, most
systems to scalably serve large files departed from the
use of HTTP-based CDNs. Two common design prin-
ciples are evident in these systems: treat large files as a
series of smaller chunks, and exchange chunks between
clients, instead of always using the origin server. Oper-
ating on chunks allows finer-grained load balancing, and
avoids the trade-offs associated with large-file handling
in traditional CDNs. Fetching chunks from other peers
not only reduces load on the origin, but also increases
aggregate capacity as the number of clients increases.

We subdivide these systems based on their inter-client
communication topology. We term those that rely on
greedy selection or all-to-all communication as exam-
ples of theswarm approach, while those that use tree-like
topologies are termedstream systems.

Swarm systems, such as BitTorrent [12] and Fast-
Replica [9], preceded stream systems, and scaled de-
spite relatively simple topologies. BitTorrent originally
used a per-file centralized directory, called a tracker, that
lists clients that are downloading or have recently down-
loaded the file. Clients use this directory to greedily find
peers that can provide them with chunks. The newest
BitTorrent can operate with tracker information shared
by clients. In FastReplica, all clients are known at the
start, and each client downloads a unique chunk from
the origin. The clients then communicate in an all-to-
all fashion to exchange chunks. These systems reduce
link stress compared to direct downloads from the origin,
but some chunks may traverse shared links repeatedly if
multiple clients download them.

The stream systems, such as ESM [10], Split-
Stream [8], Bullet [20], Astrolabe [30], and FatNemo [4]
address the issues of load balancing and link stress by op-
timizing the peer-selection process. The result generates
a tree-like topology (or a mesh or gossip-based network
inside the tree), which tends to stay relatively stable dur-
ing the download process. The effort in tree-building can
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Figure 1: Operational model for CoBlitz improvement

produce higher aggregate bandwidths, suitable for trans-
mitting the content simultaneously to a large number of
receivers. The trade-off, however, is that the higher link
utilization is possible only with greater synchrony. If
receivers are only loosely synchronized and chunks are
transmitted repeatedly on some links, the transmission
rate of any subtrees using those nodes also decreases. As
a result, these systems are best suited for synchronous
activity of a specified duration.

2.3 CoBlitz, CoDeploy, and CoDeeN
This paper discusses our experience running two large-
file distribution systems, CoBlitz and CoDeploy, which
operate on top of the CoDeeN content distribution net-
work. CoDeeN is a HTTP CDN that runs on every avail-
able PlanetLab node, with access restrictions in place
to prevent abuse and to comply with hosting site poli-
cies. It has been in operation for nearly three years, and
currently handles over 25 million requests per day. To
use CoDeeN, clients configure their browsers to use a
CoDeeN node as a proxy, and all of their Web traffic is
then handled by CoDeeN. Note that this behavior is only
part of CoDeeN as a policy decision – CoBlitz does not
require changing any browser setting.

Both CoBlitz and CoDeploy use the same infrastruc-
ture, which we call CoBlitz in the rest of this paper for
simplicity. The main difference between the two is the
access mechanism – CoDeploy requires the client to be
a PlanetLab machine, while CoBlitz is publicly accessi-
ble. CoDeploy was launched first, and allows PlanetLab
researchers to use a local instance of CoDeeN to fetch
experiment files. CoBlitz allows the public to access
CoDeploy by providing a simpler URL-based interface.
To use CoBlitz, clients prepend the original URL with
http://coblitz.codeen.org:3125/ and fetch
it like any other URL. A customized DNS server maps
the name coblitz.codeen.org to a nearby PlanetLab.

In 18 months of operation, the system has undergone
three sets of changes: scaling from just North Ameri-
can PlanetLab nodes to all of PlanetLab, changing the
algorithms to reduce load at the origin server, and chang-
ing the algorithms to reduce overall congestion and in-
crease performance. Our general mode of operation is
shown in Figure 1, and consists of four steps: (1) deploy
the system, (2) observe its behavior in actual operation,
(3) determine how the underlying algorithms, when ex-
posed to the real environment, cause the behaviors, and

(4) adapt the algorithms to make better decisions using
the real-world data. We believe this approach has been
absolutely critical to our success in improving CoBlitz,
as we describe later in this paper.

3 Design of Large File Splitting
Before discussing CoBlitz’s optimizations, we first de-
scribe how we have made HTTP CDNs amenable to han-
dling large files. Our approach has two components:
modifying large file handling to efficiently support them
on HTTP CDNs, and modifying the request routing for
these CDNs to enable more swarm-like behavior under
heavy load. Though we build on the CoDeeN CDN, we
do not believe any of these changes are CoDeeN-specific
– they could equally be applied to other CDNs. Start-
ing from an HTTP CDN maintains compatibility with
standard Web clients and servers, whereas starting with
a stream-oriented CDN might require more effort to effi-
ciently support standard Web traffic.

3.1 Requirements
We treat large files as a set of small files that can be
spread across the CDN. To make this approach as trans-
parent as possible to clients and servers, the dynamic
fragmentation and reassembly of these small files is per-
formed inside the CDN, on demand. Each CDN node
has an agent that accepts clients’ requests for large files
and converts them into a series of requests for pieces
of the file. Pieces are specified using HTTP/1.1 byte
ranges [14], which the Apache Web server has supported
since August 1996 (version 1.2), and which appeared in
other servers in the same timeframe. After these requests
are injected into the CDN, the results are reassembled
by the agent and passed to the client. For simplicity,
this agent occupies a different port number than regular
CoDeeN requests. The process has some complications,
mostly related to the design of traditional CDNs, limi-
tations of HTTP, and the limitations of standard HTTP
proxies (which are used as the CDN nodes). Some of
these problems include:

Chunk naming – If chunks are named using the orig-
inal URL, all of a file’s chunks will share the same name,
and will be routed similarly since CDNs hash URLs for
routing [16, 31]. Since we want to spread chunks across
the CDN, we must use a different chunk naming scheme.

Range caching– We know of no HTTP proxies that
cache arbitrary ranges of Web objects, though some can
serve ranges from cached objects, and even recreate a
full object from all of its chunks. Since browsers are not
likely to ask for arbitrary and disjoint pieces of an object,
no proxies have developed the necessary support. Since
we want to cache at the chunk level instead of the file
level, we must address this limitation.



original request
GET /file.iso
Host: www.example.com

?

resulting series of requests
GET /file.iso,start=0,end=9999
Host: www.example.com
X-Bigfile: 1

GET /file.iso,start=10000,end=19999
Host: www.example.com
X-Bigfile: 1
. . .

Figure 2: The client-facing agent converts a single re-
quest for a large file into a series of requests for smaller
files. The new URLS are only a CDN-internal represen-
tation – neither the client nor the origin server see them.

Congestion– During periods of bursty demand and
heavy synchrony, consistent hashing may produce rov-
ing instantaneous congestion. If many clients at different
locations suddenly ask for the same file, a lightly-loaded
CDN node may see a burst of request. If the clients all
ask for another file as soon as the first download com-
pletes, another CDN node may become instantly con-
gested. This bursty congestion prevents using the aggre-
gate CDN bandwidth effectively over short time scales.

We address these problems as a whole, to avoid new
problems from piecemeal fixes. For example, adding
range caching to the Squid proxy has been discussed
since 1998 [24], but would expand the in-memory meta-
data structures, increasing memory pressure, and would
require changing the internet cache protocol (ICP) used
by caches to query each other. Even if we added this
support to CoDeeN’s proxies, it would still require extra
support in the CDN, since the range information would
have to be hashed along with the URL.

3.2 Chunk Handling Mechanics
We modify intra-CDN chunk handling and request redi-
rection by treating each chunk as a real file with its own
name, so the bulk of the CDN does not need to be mod-
ified. This name contains the start and end ranges of the
file, so different chunks will have different hash values.
Only the CDN ingress/egress points are affected, at the
boundaries with the client and the origin server.

The agent takes the client’s request, converts it into a
series of requests for chunks, reassembles the responses,
and sends it to the client. The client is not aware that
the request is handled in pieces, and no browser modi-
fications are needed. This process is implemented in a
small program on each CDN node, so communication
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Figure 3: Large-file processing – 1. the client sends the
agent a request, 2. the agent generates a series of URL-
mangled chunk requests, 3. those requests are spread
across the CDN, 4. assuming cache misses, the URLs
are de-mangled on egress, and the responses are modi-
fied, 5. the agent collects the responses, reassembles if
needed, and streams it to the client

between it and the CDN infrastructure is cheap. The re-
quests sent into the CDN, shown in Figure 2, contain ex-
tended filenames that specify the actual file and the de-
sired byte range, as well as a special header so that the
CDN modifies these requests on egress. Otherwise, these
requests look like ordinary requests with slightly longer
filenames. The full set of steps are shown in Figure 3,
where each solid rectangle is a separate machine con-
nected via the Internet.

All byte-range interactions take place between the
proxy and the origin server – on egress, the request’s
name is reverted, and range headers are added. The
server’s response is changed from a HTTP 206 code (par-
tial content received) to 200 (full file received). The
underlying proxy never sees the byte-range transforma-
tions, so no range-caching support is required. Figure 4
shows this process with additional temporary headers.
These headers contain the file length, allowing the agent
to provide the content length for the complete download.

Having the agent use the local proxy avoids having to
reimplement CDN code (such as node liveness, or con-
nection management) in the agent, but can cause cache
pollution if the proxy caches all of the agent’s requests.
The ingress add a cache-control header that disallows lo-
cal caching, which is removed on egress when the proxy
routes the request to the next CDN node. As a result,
chunks are cached at the next-hop CDN nodes instead of
the local node.

Since the CDN sees a large number of small file re-
quests, it can use its normal routing, replication, and
caching policies. These cached pieces can then be used
to serve future requests. If a node experiences cache



Egress receives from proxy Egress sends to origin
GET /file.iso,start=20000,end=29999 GET /file.iso

Host: www.example.com - Host: www.example.com
X-Bigfile: 1 Range: bytes=20000-29999

?

Ingress sends to proxy Ingress receives from origin
HTTP/1.1 200 OK HTTP/1.1 206 Partial Content
Content-Length: 10000 � Content-Length: 10000
X-FileLen: 661000248 Accept-Ranges: bytes

Content-Range: bytes 20000-29999/661000248

Figure 4: Egress and ingress transformations when the CDN communicates with the origin server. The CDN internally
believes it is requesting a small file, and the egress transformation requests a byte-range of a large file. The ingress
converts the server’s response to a response for a complete small file, rather than a piece of a large file.

pressure, it can evict as many pieces as needed, instead of
evicting one large file. Similarly, the addition/departure
of nodes will only cause missing pieces to be re-fetched,
instead of the whole file. The only external difference is
that the server sees byte-range requests from many prox-
ies instead of one large file request from one proxy.

3.3 Agent Design
The agent is the most complicated part of CoBlitz, since
it must operate smoothly, even in the face of unpre-
dictable CDN nodes and origin servers outside our con-
trol. The agent monitors the chunk downloads for cor-
rectness checking and for performance. The correct-
ness checking consists of issues such as ensuring that the
server is capable of serving HTTP byte-range requests,
verifying that the response is cacheable, and comparing
modification headers (file length, last-modified time, etc)
to detect if a file has changed at the origin during its
download. In the event of problems, the agent can abort
the download and return an error message to the client.
The agent is the largest part of CoBlitz – it consists of
770 semicolon-lines of code (1975 lines total), versus 60-
70 lines of changes for ingress/egress modifications.

To determine when to re-issue chunk fetches, the
agent maintains overall and per-chunk statistics during
the download. Several factors may slow chunk fetching,
including congestion between the proxy and its peers,
operational problems at the peers, and congestion be-
tween the peers and the origin. After downloading the
first chunk, the agent has the header containing the over-
all file size, and knows the total number of chunks to
download. It issues parallel requests up to its limit, and
uses non-blocking operations to read data from the sock-
ets as it becomes available.

Using an approach inspired by LoCI [3], slow trans-
fers are addressed by issuing multiple requests – when-
ever a chunk exceeds its download deadline, the agent
opens a new connection and re-issues the chunk request.

The most recent request for the same chunk is allowed
to continue downloading, and any earlier requests for the
chunk are terminated. In this way, each chunk can have at
most two requests for it in flight from the agent, a depar-
ture from LoCI where even more connections are made
as the deadline approaches. The agent modifies a non-
critical field of the URL in retry requests beyond the first
retried request for each chunk. This field is stripped from
the URL on egress, and exists solely to allow the agent
to randomize the peer serving the chunk. In this way, the
agent can exert some control over which peer serves the
request, to reduce the chance of multiple failures within
the CDN. Keeping the same URL on the first retry at-
tempts to reduce cache pollution – in a load-balanced,
replicated CDN, the retry is unlikely to be assigned to
the same peer that is handling the original request.

The first retry timeout for each chunk is set using a
combination of the standard deviation and exponentially-
weighted moving average for recent chunks. Subsequent
retries use exponential backoff to adjust the deadline, up
to a limit of 10 backoffs per chunk. To bound the backoff
time, we also have a hard limit of 10 seconds for the
chunk timeout. The initial timeout is set to 3 seconds
for the first chunk – while most nodes finish faster, using
a generous starting point avoids overloading slow origin
servers. In practice, 10-20% of chunks are retried, but
the original fetch usually completes before the retry. We
could reduce retry aggressiveness, but this approach is
unlikely to cause much extra traffic to the origin since
the first retry uses a different replica with the same URL.

By default, the agent sends completed chunks to the
client as soon as they finish downloading, as long as all
preceding chunks have also been sent. If the chunk at the
head of the line has not completed downloading, no new
data is sent to the client until the chunk completes. By
using enough parallel chunk fetches, delays in download-
ing chunks can generally be overlapped with others in the
pipeline. If clients that can use chunked transfer encod-



ing provide a header in the request indicating they are
capable of handling chunks in any order, the agent sends
chunks as they complete, with no head-of-line blocking.
Chunk position information is returned in a trailer fol-
lowing each chunk, which the client software can use to
assemble the file in the correct order.

The choice of chunk size is a trade-off between ef-
ficiency and latency – small chunks will result in faster
chunk downloads, so slower clients will have less impact.
However, the small chunks require more processing at all
stages – the agent, the CDN infrastructure, and possibly
the origin server. Larger chunks, while more efficient,
can also cause more delay if head-of-line blocking arises.
After some testing, we chose a chunk size of 60KB,
which is large enough to be efficient, but small enough to
be manageable. In particular, this chunk size can easily
fit into Linux’s default outbound kernel socket buffers,
allowing the entire chunk to be written to the socket with
a single system call that returns without blocking.

3.4 Design Benefits
We believe that this design has several important features
that not only make it practical for deployment now, but
will continue to make it useful in the future:

No client synchronization– Since chunks are cached
in the CDN when first downloaded, no client syn-
chronization is needed to reduce origin traffic. If
clients are highly synchronized, agents can use the
same chunk to serve many client requests, reduc-
ing the number of intra-CDN transfers, but synchro-
nization is not required for efficient operation.

Trading bandwidth for disk seeks – Fetching most
chunks from other CDN nodes trades bandwidth
for disk seeks. Given the rate of improvement of
each, this trade-off will hold for the foreseeable fu-
ture. Bandwidth is continually dropping in price,
and disk seek times are not scaling. If this band-
width cost is an issue, it can be billed just as regular
bandwidth is billed.

Increasing chunk utility – Having all nodes store
chunks makes them available to a larger popula-
tion than storing the entire file at a small number of
nodes. Many more nodes can now serve large files,
so the total capacity is the sum of the bandwidths
they have to serve clients, and the aggregate intra-
CDN capacity is available to exchange chunks.

Using cheaper bandwidth– When CDN nodes com-
municate with each other, this bandwidth consump-
tion is either within a LAN cluster hosting the
CDN nodes, or toward the network core, away
from the clients that sit at the edge of the net-
work. Core bandwidth has been improving in

price/performance more rapidly than edge band-
width, and LAN bandwidth is virtually free, so this
consumption is in the more desirable direction.

Scaling with CDN size– As CDN size increases, and
aggregate physical memory increases, chunks can
be replicated more widely. The net result is that de-
sired chunks are more likely to be in nearby nodes,
so link stress drops as the CDN grows.

Tunable memory consumption– Varying the number
of parallel chunks downloads that are used for each
client controls the memory consumption of this ap-
proach. Slower clients can be allocated fewer paral-
lel chunks, and the aggregate number of chunks can
be reduced if a node is experiencing heavy load.

In-order or out-of-order delivery – For regular
browsers or other standard client software, chunks
are delivered in order so that the download appears
exactly like a non-CoBlitz download from the ori-
gin, and performance-hungry clients can use soft-
ware that supports chunked encoding.

4 Coping With Scale
One first challenge for CoBlitz was handling scale – at
the time of CoBlitz’s original deployment, CoDeeN was
running on all 100 academic PlanetLab node in North
America. The first major scale issue was roughly quadru-
pling the node count, to include every PlanetLab node.
In the process, we adopted three design decisions that
have served us well: (a) make peering a unilateral, asyn-
chronous decision, (b) use minimum application-level
ping times when determining suitable peers, and (c) ap-
ply hysteresis to the peer set. These are described in the
remainder of this section.

4.1 Unilateral, Asynchronous Peering
In CoDeeN, we have intentionally avoided any synchro-
nized communication for group maintenance, which re-
sults in avoiding any quorum protocols, 2-phase behav-
ior, or any group membership protocols. The motiva-
tions behind this decision were simplicity and robust-
ness – by making every decision unilaterally and inde-
pendently at each node, we avoid any situation where
forward progress fails because some handshaking proto-
col fails. As a result, CoDeeN has been operational even
in some very extreme circumstances, such as in Febru-
ary 2005, when a kernel bug caused the sudden, near-
simultaneous failures of nodes, with more than half of
all PlanetLab nodes freezing.

One side-effect of asynchronous communication is
that all peering is unilateral – nodes independently pick



All Nodes
Normal

Full Peering

All Nodes
Fetching

Figure 5: Standard peering for 6 un-
restricted nodes

Black Nodes
Restricted
Routes

Full Peering
Only On
White Nodes

Directed
Peering From
Black to White

Only White
Nodes Fetch

Figure 6: Peering with semi-
routable Internet2

Black Nodes
ISP−only

White Nodes
Normal

Full Peering
Only in Cliques

Directed
Peering From
Black to White

All Nodes
Fetching

Figure 7: Peering with policy-
restricted nodes

their peers, using periodic heartbeats and acknowledg-
ments to judge peer health. Pairwise heartbeats are sim-
ple, robust, and particularly useful for testing reachabil-
ity. More sophisticated techniques, such as aggregat-
ing node health information using trees, can reduce the
number of heartbeats, but can lead toworse information,
since the tree may miss or use different links than those
used for pairwise communication.

Unilateral and unidirectional peering improves
CoBlitz’s scalability, since it allows nodes with het-
erogeneous connectivity or policy issues to participate
to the extent possible. These scenarios are shown in
Figures 5, 6, and 7. For example, research networks
like Internet2 or CANARIE (the Canadian high-speed
network) do not peer with the commercial Internet,
but are reachable from a number of research sites
including universities and corporate labs. These nodes
advertise that they do not want any nodes (including
each other) using them as peers, since they cannot fetch
content from the commercial Internet. These sites can
unidirectionally peer with any CoDeeN nodes they
can reach – regular CoDeeN nodes do not reciprocate,
since the restricted nodes cannot fetch arbitrary Web
content. Also, in certain PlanetLab locations, both
corporate and regional, political/policy considerations
make the transit of arbitrary content an unwise idea, but
the area may have a sizable number of nodes. These
nodes advertise that only other nodes from the same
organization can use them as peers. These nodes will
peer both with each other and with unrestricted nodes,
giving them more peers for CoBlitz transfers than they
would have available otherwise. Policy restrictions are
not PlanetLab-specific – ISPs host commercial CDN
nodes in their network with the restriction that the CDN
nodes only serve their own customers.

4.2 Peer Set Selection
With the worldwide deployment of CoDeeN, some step
had to be taken to restrict the set of CoDeeN nodes that
each node would use as peers. Each CoDeeN node sends

one heartbeat per second to another node, so at 600+

PlanetLab nodes (of which 400+ are alive at any time),
a full sweep would take 10 minutes. Using our earlier
measurements that node liveness is relatively stable at
short timescales [32], we limit the peer set to 60 nodes,
which means that using an additional once-per-second
ping, the peers can be swept once per minute.

To get some indication of application health, CoDeeN
uses application-level pings, rather than network pings,
to determine round trip times (RTTs). Originally,
CoDeeN kept the average of the four most recent RTT
values, and selected the 60 closest peers within a 100ms
RTT cutoff. The 100ms cutoff was to reduce noticeable
lag in interactive settings, such as Web browsing. In
parts of the world where nodes could not find 20 peers
within 100ms, this cutoff is raised to 200ms and the 20
best peers are selected.

This approach exhibited two problems – a high rate
of change in the peer sets, and low overlap among peer
sets for nearby peers. The high change rate potentially
impacts chunk caching in CoBlitz – if the peer that pre-
viously fetched a chunk is no longer in the peer set, the
new peer that replaces it may not yet have fetched the
chunk. To address this issue, hysteresis was added to the
peer set selection process. Any peer not on the set could
only replace a peer on the set if it was closer in two-thirds
of the last 32 heartbeats. Even under the worst-case con-
ditions, using the two-thirds threshold would keep a peer
on the set for 10 minutes at a time. While hysteresis re-
duced peer set churn, it also reinforced the low overlap
between neighboring peer sets. Further investigation in-
dicated that CoDeeN’s application-level heartbeats had
more than an order of magnitude variance than network
pings. This variance led to instability in the average RTT
calculations, so once nodes were added to the peer set,
they rarely got displaced.

Switching from anaverage application-level RTT to
the minimum observed RTT (an approach also used in
other systems [6, 13, 22]) and increasing the num-
ber of samples yielded significant improvement, with



∀ nodes, hash(i) = hashcalc(URL, node name(i))
hash = sort(hash)
hash = truncate(hash, NumCandidates)
∀ nodes, index(i) = node index number of hash(i)
minval = min(load(index(i)))
hash = select hash where load(index(i)) == minval
return index(random() modulo size(hash))

Figure 8: Replicated Highest Random Weight with Load
Balancing, as used in CoDeeN

application-level RTTs correlating well with ping time
on all functioning nodes. Misbehaving nodes still
showed large application-level minimum RTTs, despite
having low ping times. The overlap of peer lists for nodes
at the same site increased from roughly half to almost
90%. At the same time, we discovered that many intra-
PlanetLab paths had very low latency, and restricting the
peer size to 60 was needlessly constrained. We increased
this limit to 120 nodes, and issued 2 heartbeats per sec-
ond. Of the nodes regularly running CoDeeN, two-thirds
tend to now have 100+ peers. More details of the re-
design process and its corresponding performance im-
provement can be found in our previous study [5].

4.3 Scaling Larger
It is interesting to consider whether this approach could
scale to a much larger system, such as a commercial
CDN like Akamai. By the numbers, Akamai is about
40 times as large as our deployment, at 15,000 servers
across 1,100 networks. However, part of what makes
scaling to this size simpler is deploying clusters at each
network point-of-presence (POP), which number only
2,500. Further, their servers have the ability to issue re-
verse ARPs and assume the IP addresses of failing nodes
in the cluster, something not permitted on PlanetLab.
With this ability, the algorithms need only scale to the
number of POPs, since the health of a POP can be used
instead of querying the status of each server. Finally,
by imposing geographic hierarchy and ISP-level restric-
tions, the problem size is further reduced. With these
assumptions, we believe that we can scale to larger sizes
without significant problems.

5 Reducing Load & Congestion
Reducing origin server load and reducing CDN-wide
congestion are related, so we present them together in
this section. Origin load is an important metric for
CoBlitz, because it determines CoBlitz’s caching bene-
fit and impacts the system’s overall performance. From a
content provider’s standpoint, CoBlitz would fetch only
a single copy of the content, no matter what the demand.
However, for reasons described below, this goal may not
be practical.

5.1 The HRW Algorithm

CoDeeN uses the Highest Random Weight (HRW) [29]
algorithm to route requests from clients. This algo-
rithm is functionally similar to Consistent Hashing [17],
but has some properties that make it attractive when
object replication is desired [31]. The algorithm used
in CoDeeN, Replicated HRW with Load Balancing, is
shown in Figure 8.

For each URL, CoDeeN generates an array of values
by hashing the URL with the name of each node in the
peer set. It then prunes this list based on the replica-
tion factor specified, and then prunes it again so only the
nodes with the lowest load values remain. The final can-
didate is chosen randomly from this set. Using replica-
tion and load balancing reduces hot spots in the CDN
– raising the replication factor reduces the chance any
node gets a large number of requests, but also increases
the node’s working set, possibly degrading performance.

5.2 Increasing Peer Set Size
Increasing the peer set size, as described in Section 4.2
has two effects – each node appears as a peer of many
more nodes than before, and the number of nodes chosen
to serve a particular URL is reduced. In the extreme, if
all CDN nodes were in each others’ peer sets, then the
total number of nodes handling any URL would equal
to NumCandidates. In practice, the peer sets give rise
to overlapping regions, so the number of nodes serving
a particular URL is tied to the product of the number of
regions andNumCandidates.

When examining origin server load in CoBlitz, we
found that nodes with fewer than five peers generate al-
most one-third of the traffic. Some poorly-connected
sites have such high latency that even with an expanded
RTT criterion, they find few peers. At the same time, few
sites use them as peers, leading to them being an isolated
cluster. For regular Web CDN traffic, these small clusters
are not much of an issue, but for large-file traffic, the ex-
tra load these clusters cause on the origin server slows the
rest of the CDN significantly. Increasing the minimum
number of peers per node to 60 reduces traffic to the ori-
gin. Because of unilateral peering, this change does not
harm nearby nodes – other nodes still avoid these poorly-
connected nodes.

Reducing the number of replicas per URL reduces ori-
gin server load, since fewer nodes fetch copies from the
origin, but it also causes more bursty traffic at those repli-
cas if downloading is synchronized. For CoBlitz, syn-
chronized downloads occur when developers push soft-
ware updates to all nodes, or when cron-initiated tasks
simultaneously fetch the same file. In these cases, de-
mand at any node experiences high burstiness over short
time scales, which leads to congestion in the CDN.



5.3 Fixing Peer Set Differences

Once other problems are addressed, differences in peer
sets can also cause a substantial load on the origin server.
To understand how this arises, imagine a CDN of 60
nodes, where each node does not see one peer at random.
If we ask all nodes for the top candidate in the HRW list
for a given URL, at least one node is likely to return the
candidate that would have been the second-best choice
elsewhere. If we ask for the top k candidates, the set will
exceed k candidates with very high probability. If each
node is missing two peers at random, the union of the
sets is likely to be at least k+2. Making the matter worse
is that these “extra” nodes fetching from the origin also
provide very low utility to the rest of the nodes – since
few nodes are using them to fetch the chunk, they do not
reduce the traffic at the other replicas.

To fix this problem, we observe that when a node re-
ceives a forwarded request, it can independently check to
see whether it should be the node responsible for serving
that request. On every forwarded request that is not satis-
fied from the cache, the receiving node performs its own
HRW calculation. If it finds itself as one of the top candi-
dates, it considers the forwarded request reasonable and
fetches it from the origin server. If the receiver finds that
it is not one of the top candidates, it forwards the request
again. We find that 3-7% of chunks get re-forwarded this
way in CoBlitz, but it can get as high as 10-15% in some
cases. When all PlanetLab nodes act as clients, this tech-
nique cuts origin server load almost in half.

Due to the deterministic order of HRW, this approach
is guaranteed to make forward progress and be loop-free.
While the worst case is a number of hops linear in the
number of peer groups, this case is also exponentially
unlikely. Even so, we limit this approach to only one
additional hop in the redirection, to avoid forwarding re-
quests across the world and to limit any damage caused
by bugs in the forwarding logic. Given the relatively low
rate of chunks forwarded in this manner, restricting it to
only one additional hop appears sufficient.

5.4 Reducing Burstiness
To illustrate the burstiness resulting from improved peer-
ing, consider a fully-connected clique of 120 CDN nodes
that begin fetching a large file simultaneously. If all have
the same peer set, then each node in the replica setk will
receive 120/k requests, each for a 60KB chunk. Assum-
ing 2 replicas, the traffic demand on each is 28.8 Mbits.
Assuming a 10 Mbps link, it will be fully utilized for 3
seconds just for this chunk, and then the utilization will
drop until the next burst of chunks.

The simplest way of reducing the short time-scale
node congestion is to increase the number of replicas
for each chunk, but this would increase the number of

fetches to the origin. Instead, we can improve on the
purely mesh-based topology by taking some elements of
the stream-oriented systems, which are excellent for re-
ducing link stress. These systems all build communica-
tion trees, which eliminates the need to have the same
data traverse a link multiple times. While trees are an
unattractive option for standard Web CDNs because they
add extra latency to every request fetched from the ori-
gin, a hybrid scheme can help the large-file case, if the
extra hops can reduce congestion.

We take the re-forwarding support to forward misdi-
rected chunks, and use it to create broader routing trees
in the peer sets. We change the re-forwarding logic to
use a different number of replicas when calculating the
HRW set, leading to a broad replica set and a smaller
set of nodes that fetch from the origin. We set theNum-
Candidates value to 1 when evaluating the re-forwarding
logic, while dynamically selecting the value at the first
proxy. The larger replica set at the first hop reduces the
burstiness at any node without increasing origin load.

To dynamically select the number of replicas, we ob-
serve that we can eliminate burstiness by spreading the
requests equally across the peers at all times. With a tar-
get per-client memory consumption, we can determine
how many chunks are issued in parallel. So, the replica-
tion factor is governed by the following equation:

replicationfactor =
peersize ∗ chunksize

memoryconsumption
(1)

At 1 MB of buffer space per client, a 60KB chunk size,
and 120 peers, our replication factor will be 7. We can,
of course, cap the number of peers at some reasonable
fraction of the maximum number of peers so that mem-
ory pressure does not cause runaway replication for the
sake of load balancing. In practice, we limit the replica-
tion factor to 20% of the minimum target peer set, which
yields a maximum factor of 12.

5.5 Dynamic Window Scaling
Although parallel chunk downloads can exploit multi-
path bandwidth and reduce the effect of slow transfers,
using a fixed number of parallel chunks also has some
congestion-related drawbacks which we address. When
the content is not cached, the origin server may receive
more simultaneous requests than it can handle if each
client is using a large number of parallel chunks. For
example, the Apache Web Server is configured by de-
fault to allow 150 simultaneous connection, and some
sites may not have changed this value. If a CDN node
has limited bandwidth to the rest of the CDN, too many
parallel fetches can cause self-congestion, possibly un-
derutilizing bandwidth, and slowing down the time of all
fetches. The problem in this scenario is that too many
slow chunks will cause more retries than needed.
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Figure 9: Throughput distribution for various window
adjusting functions - Test scheme is described in sec-
tion 6

In either of these scenarios, using a smaller number of
simultaneous fetches would be beneficial, since the per-
chunk download time would improve. We view finding
the “right” number of parallel chunks as a congestion is-
sue, and address it in a manner similar to how TCP per-
forms congestion control. Note that changing the number
of parallel chunks is not an attempt to perform low-level
TCP congestion control – since the fetches are them-
selves using TCP, we have this benefit already. More-
over, since the underlying TCP transport is already using
additive-increase multiplicative-decrease, we can choose
whatever scheme we desire on top of it.

Drawing on TCP Vegas [6], we use the extra infor-
mation we have in the CoBlitz agent to make the chunk
“congestion window” a little more stable than a simple
sawtooth. We use three criteria: (1) if the chunk finishes
in less than the average time, increase the window, (2) if
the first fetch attempt is killed by retries, shrink the win-
dow, and (3) otherwise, leave the window size unmod-
ified. We also decide that if more chunk fetches are in
progress than the window size dictates, existing fetches
are allowed to continue, but no new fetches (including re-
tries) are allowed. Given that our condition for increasing
the window is already conservative, we give ourselves
some flexibility on exactly how much to add. Similarly,
given that the reason for requiring a retry might be that
any peer is slow, we decide against using multiplicative
decrease when a chunk misses the deadline.

While determining the decrease rate is fairly easy,
choosing a reasonable increase rate required some ex-
perimentation. The decrease rate was chosen to be one
full chunk for each failed chunk, which would have the
effect of closing the congestion window very quickly if
all of the chunks outstanding were to retry. This logic
is less severe than multiplicative decrease if only a small
number of chunks miss their deadlines, but can shrink
the window to a single chunk within one “RTT” (in this
case, average chunk download time) in the case of many

failures.
Some experimentation with different increase rates is

shown in Figure 9. The purely additive condition,1
x

on each fast chunk (where x is the current number of
chunks allowed), fares poorly. Even worse is adding one-
tenth of a chunk per fast chunk, which would be a slow
multiplicative increase. The more promising approaches,
adding log(x)

x
and 1

log(x) (where we use log(1) = 1) pro-

duce much better results. The1
x

case is not surprising,
since it will always be no more than additive, since the
window grows only when performing well. In TCP, the
“slow start” phase would open the window exponentially
faster, so we choose to use1

log(x) to achieve a similar ef-
fect – it grows relatively quickly at first, and more slowly
with larger windows. The chunk congestion window is
maintained as a floating-point value, which has a lower
bound of 1 chunk, and an upper bound as dictated by the
buffer size available, which is normally 60 chunks. The
final line in the graph, showing a fixed-size window of
60 chunks, appears to produce better performance, but
comes at the cost of a higher node failure rate – 2.5 times
as many nodes fail to complete with the fixed window
size versus the dynamic sizing.

6 Evaluation
In this section, we evaluate the performance of CoBlitz,
both in various scenarios, and in comparison with Bit-
Torrent [12]. We use BitTorrent because of its wide use
in large-file transfer [7], and because other research sys-
tems, such as Slurpie, Bullet’ and Shark [2, 19, 26],
are not running (or in some cases, available) at the time
of this writing. As many of these have been evaluated
on PlanetLab, we draw some performance and behavior
comparisons in Section 7.

One unique aspect of our testing is the scale – we use
every running PlanetLab node except those at Princeton,
those designated as alpha testing nodes, and those behind
firewalls that prevent CoDeeN traffic. The reason for
excluding the Princeton nodes is because we place our
origin server at Princeton, so the local PlanetLab nodes
would exhibit unrealistically large throughputs and skew
the means. During our testing in September and early
October 2005, the number of available nodes that met
the criteria above ranged from 360-380 at any given time,
with a union size of 400 nodes.

Our test environment consists of a server with
an AMD Sempron processor running at 1.5 GHz,
with Linux 2.6.9 as its operating system and lighttpd
1.4.4 [18] as our web server. Our testing consists of
downloading a 50MB file in various scenarios. The
choice of this file size was to facilitate comparisons with
other work [2, 19], which uses file sizes of 40-50MB in
their testing. Our testing using a 630MB ISO image for
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Figure 10: Achieved throughput distribution for all live PlanetLab nodes

the Fedora Core 4 download yielded slightly higher per-
formance, but would complicate comparisons with other
systems. Given that some PlanetLab nodes are in parts of
the world with limited bandwidth, our use of 50MB files
also reduces contention problems for them. Each test is
run three times, and the reported numbers are the average
value across the tests for which the node was available.
Due to the dynamics of PlanetLab, over any long period
of time, the set of available nodes will change, and given
the span of our testing, this churn is unavoidable.

We tune BitTorrent for performance – the clients and
the server are configured to seed the peers indefinitely,
and the maximum number of peers is increased to 60.
While live BitTorrent usage will have lower performance
due to fewer peers and peers departing after download-
ing, we want the maximum BitTorrent performance.

We test a number of scenarios, as follows:

Direct – all clients fetch from the origin in a sin-
gle download, which would be typical of standard
browsers. For performance, we increase the socket
buffer sizes from the system defaults to cover the
bandwidth-delay product.

BitTorrent Total – this is a wall-clock timing of Bit-
Torrent, which reflects the user’s viewpoint. Even
when all BitTorrent clients are started simultane-
ously, downloads begin at different times since
clients spend different amounts of time contacting
the tracker and finding peers.

BitTorrent Core – this is the BitTorrent performance
from the start of the actual downloading at each
client. In general, this value is 25-33% higher than
the BitTorrent Total time, but is sometimes as much
as 4 times larger.

In-order CoBlitz with Synchronization – Clients use
CoBlitz to fetch a file for the first time and the
chunks are delivered in order. All clients start at
the same time.

In-order CoBlitz with Staggering – We stagger the
start of each client by the same amount of time that
BitTorrent uses before it starts downloading. These
stagger times are typically 20 to 40 seconds, with a
few outliers as high as 150-230 seconds.

In-order CoBlitz with Contents Cached – Clients ask
for a file that has already been fetched previously,
and whose chunks are cached at the reverse proxies.
All clients begin at the same time.

Out-of-order tests – Out-of-order CoBlitz with Syn-
chronization, Out-of-order CoBlitz with Stag-
gering, and Out-of-order CoBlitz with Contents
Cached are the same as their in-order counterparts
described above, but the chunks are delivered to the
clients out of order.

6.1 Overall Performance
The throughputs and download times for all tests are
shown in Figure 10 and Figure 11, with summaries pre-
sented in Table 1. For clarity, we trim the x axes of both
graphs, and the CDFs shown are of all nodes completing
the tests. The actual number of nodes finishing each test
are shown in the table. In the throughput graph, lines to
the right are more desirable, while in the download time
graph, lines to the left are more desirable.

From the graphs, we can see several general trends:
all schemes beat direct downloading, uncached CoBlitz
generally beats BitTorrent, out-of-order CoBlitz beats
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Figure 11: Download times across all live PlanetLab nodes

Strategy Nodes Throughput Download Time
Good Failed Mean 50% 90% Mean 50% 90%

Direct 372 17-18 0.23 0.20 0.38 1866.8 1618.2 3108.7

BitTorrent-Total 367 21-25 1.97 1.88 3.79 519.0 211.7 1078.3
BitTorrent-Core 367 21-25 2.52 2.19 5.32 485.1 181.1 1036.9

CoBlitz In-order Sync’d 380 8-12 2.50 2.78 3.52 222.4 143.6 434.3
CoBlitz In-order Staggered 383 5-9 2.99 3.26 4.54 122.4 141.7 406.4
CoBlitz In-order Cached 377 12-16 3.51 3.65 5.65 185.2 109.5 389.1

CoBlitz Out-of-order Sync’d 381 8-10 2.91 3.15 4.17 193.9 127.0 381.6
CoBlitz Out-of-order Staggered 384 5-8 3.68 3.78 5.91 105.4 124.6 365.2
CoBlitz Out-of-order Cached 379 8-13 4.36 4.08 7.46 164.3 98.1 349.5

Table 1: Throughputs (in Mbps) and times (in seconds) for various downloading approaches with all live PlanetLab
nodes. The count of good nodes is the typical value for nodes completing the download, while the count of failed
nodes shows the range of node failures.

in-order delivery, staggered downloading beats synchro-
nized delivery, and cached delivery, even when syn-
chronized, beats the others. Direct downloading at this
scale is particularly problematic – we had to abruptly
shut down this test because it was consuming most of
Princeton’s bandwidth and causing noticeable perfor-
mance degradation.

The worst-case performance for CoBlitz occurs for the
uncached case where all clients request the content at ex-
actly the same time and more load is placed on the origin
server at once. This case is also very unlikely for regu-
lar users, since even a few seconds of difference in start
times defeats this problem.

The fairest comparison between BitTorrent and
CoBlitz is BT-Total versus CoBlitz out-of-order with
Staggering, in which case CoBlitz beats BitTorrent by
55-86% in throughput and factor of 1.7 to 4.94 in down-
load time. Even the worst-case performance for CoBlitz,
when all clients are synchronized on uncached content,

generally beats BitTorrent by 27-48% in throughput and
a factor of 1.47 to 2.48 in download time.

In assessing how well CoBlitz compares against Bit-
Torrent, it is interesting to examine the 90th percentile
download times in Table 1 and compare them to the mean
and median throughputs. This comparison has appeared
in other papers comparing with BitTorrent [19, 26]. We
see that the tail of BitTorrent’s download times is much
worse than comparing the mean or median values. As a
result, systems that compare themselves primarily with
the worst-case times may be presenting a much more op-
timistic benefit than seen by the majority of users.

It may be argued that worst-case times are important
for systems that need to know an update has been prop-
agated to its members, but if this is an issue, more im-
portant than delay is failure to complete. In Table 1, we
show the number of nodes that finish each test, and these
vary considerably despite the fact that the same set of
machines is being used. Of the approximately 400 ma-



CoBlitz BitTorrent
Sync Stagger

In-Order Out In-Order Out
7.0 7.9 9.0 9.0 10.0

Table 2: Bandwidth consumption at the origin, measured
in multiples of the file size

chines available across the union of all tests, only about
5-12 nodes fail to complete using CoBlitz, while roughly
17-18 fail in direct testing, and about 21-25 fail with Bit-
Torrent. The 5-12 nodes where CoBlitz eventually stops
trying to download are at PlanetLab sites with highly-
congested links, poor bandwidth, and other problems –
India, Australia, and some Switzerland nodes.

6.2 Load at the Origin
Another metric of interest is how much traffic reaches
the origin server in these different tests, and this infor-
mation is provided in Table 2, shown as a multiple of the
file size. We see that the CoBlitz scenarios fetch a total
of 7 to 9 copies in the various tests, which yields a util-
ity of 43-55 nodes served per fetch (or a cache hit rate
of 97.6 - 98.2%). BitTorrent has comparable overall load
on the origin, at 10 copies, but has a lower utility value,
35, since it has fewer nodes complete. For Shark, the au-
thors observed it downloading 24 copies from the origin
to serve 185 nodes, yielding a utility of 7.7. We believe
that part of the difference may stem from peering policy
– CoDeeN’s unilateral peering approach allows poorly-
connected nodes to benefit from existing clusters, while
Coral’s latency-oriented clustering may adversely impact
the number of fetches needed.

A closer examination of fetches per chunk, shown
in Figure 12, shows that CoBlitz’s average of 8 copies
varies from 4-11 copies by chunk, and these copies ap-
pear to be spread fairly evenly geographically. The
chunks that receive only 4 fetches are particularly inter-
esting, because they suggest it may be possible to cut
CoBlitz’s origin load by another factor of 2. We are in-
vestigating whether these chunks happen to be served by
nodes that overlap with many peer sets, which would fur-
ther validate CoBlitz’s unilateral peering.

6.3 Performance after Flash Crowds
Finally, we evaluate the performance of CoBlitz after a
flash crowd, where the CDN nodes can still have the
file cached. This was one of motivations for building
CoBlitz on top of CoDeeN – that by using an infras-
tructure geared toward long-duration caching, we could
serve the object quickly even after demand for it drops.
This test is shown in Figure 13, where clients at all Plan-
etLab nodes try downloading the file individually, with
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Figure 13: Single node download after flash crowds

no two operating simultaneously. We see that perfor-
mance is still good after the flash crowd has dissipated –
the median for this in-order test is above 7 Mbps, almost
tripling the median for in-order uncached and doubling
the median of in-order cached. At this bitrate, clients can
watch DVD-quality video in real time. We include Bit-
Torrent only for comparison purposes, and we see that its
median has only marginally improved in this scenario.

6.4 Real-world Usage
One of our main motivations when developing CoBlitz
was to build a system that could be used in production,
and that could operate with relatively little monitoring.
These decisions have led us not only to use simpler, more
robust algorithms where possible, but also to restrict the
content that we serve. To keep the system usage focused
on large-file transfer with a technical focus, and to pre-
vent general-purpose bandwidth cost-shifting, we have
placed restrictions on what the general public can serve
using CoBlitz. Unless the original file is hosted at a uni-
versity, CoBlitz will not serve HTML files, most graphics
types, and most audio/video formats. As a result of these
policies, we have not received any complaints related to
the content served by CoBlitz, which has simplified our
operational overhead.
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Figure 14: CoBlitz Feb 2006 usage by requests
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Figure 15: CoBlitz Feb 2006 usage by bytes served

Figure 16: CoBlitz traffic in Kbps on release of Fedora Core 5,averaged over 15-minute intervals. The 5-minute peaks
exceeded 700 Mbps.

To get a sense of a typical month’s CoBlitz usage,
we present the breakdown for February 2006 traffic in
Figures 14 (by number of requests) and 15 (by bytes
served). Most of the requests for files less than 2MB
come from the Stork service [28], which provides pack-
age management on PlanetLab, and the CiteSeer Digital
Library [11], which provides document downloads via
CoBlitz. The two spikes in bytes served are from the Fe-
dora Core Linux distribution, available as either down-
loadable CD images or DVD images. Most of the re-
maining traffic comes from smaller sites, other PlanetLab
users, and Fedora Core RPM downloads.

A more unusual usage pattern occurred on March 20,
2006, when the Fedora Core 5 Linux distribution was re-
leased. Within minutes of the official announcement on
the Fedora mailing lists, the availability was mentioned
on the front page of Slashdot [27], on a Monday morning
for the US. The measurements from this day and the pre-
vious day are shown in Figure 16. In less than an hour,
CoBlitz went from an average of 20Mbps of traffic to
over 400 Mbps, and sustained 5-minute peaks exceeded
700Mbps. CoBlitz functioned as expected, with one
exception – many of the clients were using “download
agents” that fetch files using a “no-cache” HTTP header.
CoBlitz had been honoring these requests for PlanetLab

researchers who wanted to force refreshes, and we had
not seen a problem in other environments. However, for
this download, these headers were causing unnecessary
fetches to the origin that were impacting performance.
We made a policy decision to disregard these headers
for the Fedora Mirror sites, at which point origin traf-
fic dropped dramatically. This flash crowd had a rela-
tively long tail – it average 200-250Mbps on the third
day, and only dropped to less than 100Mbps on the fifth
day, a weekend. The memory footprint of CoBlitz was
also low – even serving the CD and DVD images on sev-
eral platforms (PPC, i386, x8664), the average memory
consumption was only 75MB per node.

7 Related Work
Several projects that perform large file transfer have been
measured on PlanetLab, with the most closely related
ones being Bullet’ [19], and Shark [2], which is built on
Coral [15]. Though neither system is currently accessible
to the public, both have been evaluated recently. Bullet’,
which operates out-of-order and uses UDP, is reported to
achieve 7 Mbps when run on 41 PlanetLab hosts at dif-
ferent sites. In testing under similar conditions, CoBlitz
achieves 7.4 Mbps (uncached) and 10.6 Mbps (cached)
on average. We could potentially achieve even higher re-



Shark CoBlitz Bullet’
Uncached Cached
In Out In Out

# Nodes 185 41 41 41 41 41
Median 1.0 6.8 7.4 7.4 9.2
Mean 7.0 7.4 8.4 10.6 7.0

Table 3: Throughput results (in Mbps) for various sys-
tems at specified deployment sizes on PlanetLab. All
measurements are for 50MB files, except for Shark,
which uses 40MB.

sults by using a UDP-based transport protocol, but our
experience suggests that UDP traffic causes more prob-
lems, both from intrusion detection systems as well as
stateful firewalls. Shark’s performance for transferring a
40MB file across 185 PlanetLab nodes shows a median
throughput of 0.96 Mbps. As discussed earlier, Shark
serves an average of only 7.7 nodes per fetch, which
suggests that their performance may improve if they use
techniques similar to ours to reduce origin server load.
The results for all of these systems are shown in Table 3.
The missing data for Bullet’ and Shark reflect the lack of
information in the publications, or difficulty extracting
the data from the provided graphs.

The use of parallel downloads to fetch a file has been
explored before, but in a more narrow context – Ro-
driguezet al. use HTTP byte-range queries to simulta-
neously download chunks in parallel from different mir-
ror sites [23]. Their primary goal was to improve sin-
gle client downloading performance, and the full file is
pre-populated on all of their mirrors. What distinguishes
CoBlitz from this earlier work is that we make no as-
sumptions about the existence of the file on peers, and we
focus on maintaining stability of the system even when
a large number of nodes are trying to download simulta-
neously. CoBlitz works if the chunks are fully cached,
partially cached, or not at all cached, fetching any miss-
ing chunks from the origin as needed. In the event that
many chunks need to be fetched from the origin, CoBlitz
attempts to reduce origin server overload. Finally, from
a performance standpoint, CoBlitz attempts to optimize
the memory cache hit rate for chunks, something not con-
sidered in Rodriguez’s system.

While comparing with other work is difficult due to
the difference in test environment, we can make some
informed conjecture based on our experiences. Fast-
Replica’s evaluation includes tests of 4-8 clients, and
their per-client throughput drops from 5.5 Mbps with 4
clients to 3.6 Mbps with 8 clients [9]. Given that their file
is broken into a small number of equal-sized pieces, the
slowest node in the system is the overall bottleneck. By
using a large number of small, fixed-size pieces, CoBlitz
can mitigate the effects of slow nodes, either by increas-

ing the number of parallel fetches, or by retrying chunks
that are too slow. Another system, Slurpie, limits the
number of clients that can access the system at once by
having each one randomly back off such that only a small
number are contacting the server regardless of the num-
ber of nodes that want service. Their local-area testing
has clients contact the server at the rate of one every
three seconds, which staggers it far more than BitTor-
rent. Slurpie’s evaluation on PlanetLab provides no ab-
solute performance numbers [26], making it difficult to
draw comparisons. However, their performance appears
to degrade beyond 16 nodes.

The scarcity of deployed systems for head-to-head
comparisons supports part of our motivation – by reusing
CDN infrastructure, we have been able to easily deploy
CoBlitz and keep it running.

8 Conclusion
We show that, with a relatively small amount of mod-
ification, a traditional, HTTP-based content distribu-
tion network can be made to efficiently support scalable
large-file transfer. Even with no modifications to clients,
servers, or client-side software, our approach provides
good performance under demanding conditions, but can
provide even higher performance if clients implement a
relatively simple HTTP feature, chunked encoding.

Additionally, we show how we have taken the expe-
rience gained from 18 months of CoBlitz deployment,
and used it to adapt our algorithms to be more aware of
real-world conditions. We demonstrate the advantages
provided by this approach by evaluating CoBlitz’s per-
formance across all of PlanetLab, where it exceeds the
performance of BitTorrent as well as all other research
efforts known to us.

In the process of making CoBlitz handle scale and
reduce congestion both within the CDN and at the ori-
gin server, we identify a number of techniques and ob-
servations that we believe can be applied to other sys-
tems of this type. Among them are: (a) using unilat-
eral peering, which simplifies communication as well
as enabling the inclusion of policy-limited or poorly-
connected nodes, (b) using request re-forwarding to re-
duce the origin server load when nodes send requests
to an overly-broad replica set, (c) dynamically adjust-
ing replica sets to reduce burstiness in short time scales,
(d) congestion-controlled parallel chunk fetching, to re-
duce both origin server load as well as self-interference
at slower CDN nodes.

We believe that the lessons we have learned from
CoBlitz should help not only the designers of future sys-
tems, but also provide a better understanding of how to
design these kinds of algorithms to reflect the unpre-
dictable behavior we have seen in real deployment.
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