
Accelerating Flow Processing Middleboxes with Programmable
NICs

YoungGyoun Moon, Ilwoo Park, Seungeon Lee, and KyoungSoo Park
School of Electrical Engineering, KAIST

ABSTRACT
Software network functions are increasingly popular as they promise
operational flexibility unconstrained by physical limitations. How-
ever, meeting the stringent requirements of high throughput and
low latency in modern networks is often challenging on commodity
hardware as network bandwidth is upgraded to 10s of Gbps and
the number of concurrent flows grows.

To address the problem, we explore the potential of harnessing
modern programmable network interface cards (NICs) to dynami-
cally offload stateful operations of network functions. We identify a
set of candidate operations that can be offloaded to programmable
NICs, and gauge the expected benefits in terms of CPU load reduc-
tion and throughput and latency improvement. We also consider
challenges in offloading stateful operations to programmable NICs.

CCS CONCEPTS
• Networks → Middleboxes / network appliances; • Hard-
ware → Networking hardware;

KEYWORDS
Flow-processing middleboxes; Programmable NIC; NIC offloading
ACM Reference Format:
YoungGyoun Moon, Ilwoo Park, Seungeon Lee, and KyoungSoo Park. 2018.
Accelerating Flow Processing Middleboxes with Programmable NICs. In
APSys ’18: 9th Asia-Pacific Workshop on Systems (APSys ’18), August 27–28,
2018, Jeju Island, Republic of Korea. ACM, New York, NY, USA, 3 pages.
https://doi.org/10.1145/3265723.3265744

1 INTRODUCTION
Modern network functions or middleboxes perform a key func-
tionality in networks. With the trend of “softwarization”, network
operators can maintain sophisticated network functions freed from
the limitations of specific hardware, facilitate a new feature, and
dynamically scale middlebox instances in response to changes in
incoming workloads.

Unfortunately, achieving high throughput and low latency with
software network functions remains challenging on off-the-shelf
commodity hardware. Even with user-level networking stacks de-
signed to bypass the inefficient kernel [1, 9, 10], it is often difficult

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
APSys ’18, August 27–28, 2018, Jeju Island, Republic of Korea
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6006-7/18/08. . . $15.00
https://doi.org/10.1145/3265723.3265744

to produce throughputs in excess of multi-10Gbps, and to achieve
the latency within hundreds of microseconds [3, 4, 6].

Exploiting programmable NICs to offload CPU computation
could be an attractive solution. Equipped with re-configurable net-
work fabrics such as FPGA [5] or specialized flow processors [2, 15],
modern programmable NICs allow expressing flexible operations
on packet processing at multi-10Gbps speed. Recent works propose
to fully offload packet-level or flow-level network functions like
in-band network telemetry [12], heavy hitter detection [8], and
layer-4 load balancing [14] onto programmable NICs.

In this paper, we consider the potential of harnessing programmable
NICs for flow-processing middleboxes, such as layer-7 load bal-
ancers or web application firewalls. Stateful operations in flow pro-
cessing are often deemed as a major source of bottleneck [9], but
there have been little effort on accelerating them with NICs. This is
largely because such operations have been considered unoffloadable
as state management is a complex task executed in CPU. In contrast,
we identify some opportunities here. First, state management like
connection setup and teardown does not require concurrent state
sharing with host, making it easy for offloading. Second, some op-
eration such as connection splicing is too expensive to run in CPU.
NIC offloading of connection splicing would save lots of CPU cycles
and memory bandwidth that would be wasted on DMA operations
and content copying. Third, certain middlebox operations require
only metadata instead of packet content. Programmable NICs could
pre-process the packets and deliver only the needed information
to host. While there have been prior works [11, 13] that support
partial offloading of network functions, our work is the first that
identifies the opportunities in flow processing tasks. We explain
the opportunities, and share a preliminary result that demonstrates
the benefit of NIC offloading.

2 OPPORTUNITIES AND CHALLENGES
We envision potential benefits of NIC offloading in several flow
processing applications, and address the challenges in offloading
stateful operations.
Connection setup and teardown:Wefirst consider several proxy
and gateway applications that actively participate in on-going con-
nections. During connection setup and teardown, existing network
stacks handle three or four control packets, and the control packet
processing latency often dominates the flow completion time of
short-lived connections. Offloading TCP connection management
from host to a NIC could save the CPU cycles for DMA operations
and control packet processing, and reduce the flow completion time
of short-lived connections.

A programmable NIC can handle a TCP connection setup in a
stateless manner with a SYN cookie. When a SYN packet arrives
at a NIC, it calculates a SYN cookie and responds with a SYN-ACK

https://doi.org/10.1145/3265723.3265744
https://doi.org/10.1145/3265723.3265744

APSys ’18, August 27–28, 2018, Jeju Island, Republic of Korea YoungGyoun Moon, Ilwoo Park, Seungeon Lee, and KyoungSoo Park

(a) Connection setup (b) Connection splicing (c) Filtering/coalescing packet metadata

App

Client ServerNIC

Middlebox

② Translate and forward at NIC

①After connection setup,
install splicing rulesApp

Client NIC

Middlebox

② Deliver ACK with SYN cookie to app

① Respond with SYN cookie
SYN

SYN-ACK (cookie)
ACK (cookie)

App

Client ServerNIC

Middlebox

ACK
(cookie)

① Filter the packet fields interested by app

② Coalesce filtered fields
when passing them to host

Figure 1: Example scenarios for NIC offloading of flow processing middlebox operations

packet that reflects the cookie. When the client sends back an ACK
packet with a correct sequence number, the NIC informs the host
of a new connection, and the host networking stack reconstructs
the connection state based on the ACK packet. The host side does
not need to handle SYN packets nor need to manage half-open
connection states. Offloading connection teardown process to NICs
is more challenging because NICs should maintain states, including
TCP state and sequence numbers, to track the teardown process. In
addition, because a FIN packet can be lost, the NIC should retransmit
the packet when it fails to be acknowledged by the other end host.
Connection splicing: Proxy applications including layer-7 load
balancer and application-level gateway are used to enforce fine-
grained traffic delivery policy based on the request header from
a client. When a proxy does not rewrite the content, it can sim-
ply fall back to layer-4 forwarding afterwards. For example, many
open-source layer-7 load balancers use the splice() system call to
transparently forward TCP payload between the two connections
in kernel [7, 16]. However, even with splice(), each packet needs to
be passed over a PCIe channel twice, incurring heavy DMA over-
head. To address it, we dynamically offload connection splicing to
NICs. When a proxy decides to splice two connections, it installs
forwarding rules on a NIC to translate network addresses and ports
between the two connections, as well as to update protocol-specific
fields like TCP sequence numbers and acknowledge numbers. After
the offload, the NIC dataplane simply performs bidirectional trans-
lation while it transparently offloads complex operations such as
flow/congestion control and packet retransmission to end hosts.

When the spliced connections finish, the rules for connection
splicing must be uninstalled. To handle this, the NIC dataplane
should hold minimal states for tracking connection teardown as
described above. Layer-7 load balancers often preserve the idle
keepalive connections to back-end servers in their cache to reuse
them even if the corresponding front-end connection finishes. For
connection reuse, we may develop a mechanism that re-stores the
connection state from a NIC to the host networking stack.
Filtering/Coalescing Packet Metadata: For middleboxes that in-
spect a subset of packet header fields (e.g., # of connections, flow
size), NICs can extract and pass only those fields to host to re-
duce the DMA overhead. If multiple packets arrive together, NICs
coalesce them into a single packet to minimize the overhead.

3 PRELIMINARY EVALUATION
We demonstrate the benefit of NIC offloading of TCP connection
splicing. We build a P4 application that performs connection splic-
ing on a NIC, and run it on a Agilio-CX NIC with a 40GbE port.

0

10

20

30

40

64B 256B 1KiB 4KiB

T
hr

ou
gh

pu
t (

G
bp

s)

File Size

CPU-only
NIC offloading

Figure 2: Performance of connection splicing of an L7 proxy
(NIC vs. networking stack)

Since the current interface for installing P4 rules on the Agilio
NIC is inefficient (< 3000 rules/sec), we evaluate with static rules
for TCP connection splicing. We compare its performance against
a layer-7 proxy written in mTCP [10], a scalable user-level TCP
stack, running on a 8-core CPU (Xeon E5-2640v3) and a commodity
40 GbE NIC (Intel XL710-QDA2). We generate 8,000 concurrent
HTTP persistent connections using four pairs of server and client
machines each equipped with a 10GbE NIC. Figure 2 shows that
NIC offloading of connection splicing outperforms the software-
only implementation with an optimized TCP stack, at a much lower
cost ($610 vs. $1,390). Our prototype achieves a better response
time (835 us vs. 5324 us for 64 B response), avoiding the latency for
DMA operations and packet processing.

4 CONCLUSION AND FUTUREWORK
We have explored the opportunities for accelerating flow process-
ing middleboxes with programmable NICs, and our preliminary
result is promising. As a future work, we plan to design an opti-
mal offloading policy, instead of blindly offloading the whole flows.
We also aim to provide systems support for separating out the
offloadable tasks from flow processing middleboxes, and to pro-
vide dynamic offloading with a minimal development cost. One
possibility is to design and implement a programming interface
for seamless offloading to programmable NICs, and to extend the
existing networking stacks for flow processing middleboxes [9, 10].

ACKNOWLEDGMENT
We thank anonymous reviewers of APSys’18 for their insightful
comments. This work is supported in part by the ICT Research and
Development Program of MSIP/IITP, Korea, under projects [High
Performance BigData Analytics Platform PerformanceAcceleration
Technologies Development] and [Development of an ultra low-
latency user-level transfer protocol].

Accelerating Flow Processing Middleboxes with Programmable NICs APSys ’18, August 27–28, 2018, Jeju Island, Republic of Korea

REFERENCES
[1] Tom Barbette, Cyril Soldani, and Laurent Mathy. 2015. Fast userspace packet

processing. In Proceedings of the 11th ACM/IEEE Symposium on Architectures for
Networking and Communications Systems (ANCS ’15).

[2] Cavium. 2018. Cavium LiquidIO II Network Appliance Smart NICs. http://www.
cavium.com/LiquidIO-II_Network_Appliance_Adapters.html. (2018).

[3] Byungkwon Choi, Jongwook Chae, Muhammad Jamshed, KyoungSoo Park, and
DongsuHan. 2016. DFC: Accelerating PatternMatching for NetworkApplications.
In Proceedings of the 13th USENIX Symposium on Networked Systems Design and
Implementation (NSDI ’16).

[4] Daniel E Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman Kononov,
Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney, Wentao Shang, and Jin-
nah Dylan Hosein. 2016. Maglev: A Fast and Reliable Software Network Load
Balancer. In Proceedings of the 13th USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’16).

[5] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza
Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, et al. 2018. Azure Accelerated Networking: SmartNICs in the Public Cloud.
In Proceedings of the 15th USENIX Symposium on Networked Systems Design and
Implementation (NSDI ’18).

[6] Rohan Gandhi, Y Charlie Hu, and Ming Zhang. 2016. Yoda: A Highly Avail-
able Layer-7 Load Balancer. In Proceedings of the 11th European Conference on
Computer Systems (EuroSys ’16).

[7] HAProxy. 2018. HAProxy - The Reliable, High-performance TCP/HTTP Load
Balancer. http://www.haproxy.org/. (2018).

[8] Rob Harrison, Qizhe Cai, Arpit Gupta, and Jennifer Rexford. 2018. Network-
Wide Heavy Hitter Detection with Commodity Switches. In Proceedings of the
Symposium on SDN Research (SOSR ’18).

[9] Muhammad Asim Jamshed, YoungGyoun Moon, Donghwi Kim, Dongsu Han, and
KyoungSoo Park. 2017. mOS: A Reusable Networking Stack for Flow Monitoring
Middleboxes. In Proceedings of the 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’17).

[10] EunYoung Jeong, Shinae Woo, Muhammad Jamshed, Haewon Jeong, Sunghwan
Ihm, Dongsu Han, and KyoungSoo Park. 2014. mTCP: a Highly Scalable User-level
TCP Stack for Multicore Systems. In Proceedings of the 11th USENIX Symposium
on Networked Systems Design and Implementation (NSDI ’14).

[11] Georgios P Katsikas, Tom Barbette, Dejan Kostic, Rebecca Steinert, and Gerald Q
Maguire Jr. 2018. Metron: NFV Service Chains at the True Speed of the Underlying
Hardware. In Proceedings of the 15th USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’18).

[12] Changhoon Kim, Anirudh Sivaraman, Naga Katta, Antonin Bas, Advait Dixit,
and Lawrence J Wobker. 2015. In-band Network Telemetry via Programmable
Dataplanes. In Proceedings of the Symposium on SDN Research (SOSR ’15).

[13] Yanfang Le, Hyunseok Chang, Sarit Mukherjee, Limin Wang, Aditya Akella,
Michael M Swift, and TV Lakshman. 2017. UNO: Uniflying Host and Smart NIC
Offload for Flexible Packet Processing. In Proceedings of the Symposium on Cloud
Computing (SoCC ’17).

[14] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan Yu. 2017.
SilkRoad: Making Stateful Layer-4 Load Balancing Fast and Cheap Using Switch-
ing ASICs. In Proceedings of the ACM SIGCOMM 2017 Conference (SIGCOMM
’17).

[15] Netronome. 2018. Netronome: About Agilio SmartNICs. (2018). Retrieved August
3, 2018 from https://www.netronome.com/products/smartnic/overview/

[16] Nginx. 2018. NGINX | High Performance Load Balancer, Web Server & Reverse
Proxy. https://www.nginx.com/. (2018).

http://www.cavium.com/LiquidIO-II_Network_Appliance_Adapters.html
http://www.cavium.com/LiquidIO-II_Network_Appliance_Adapters.html
http://www.haproxy.org/
https://www.netronome.com/products/smartnic/overview/
https://www.nginx.com/

	Abstract
	1 Introduction
	2 Opportunities and Challenges
	3 Preliminary Evaluation
	4 Conclusion and Future Work
	References

