
Scalable TCP Session Monitoring with
Symmetric Receive-side Scaling

Shinae Woo
Department of Electrical Engineering

KAIST
shinae@ndsl.kaist.edu

KyoungSoo Park
Department of Electrical Engineering

KAIST
kyoungsoo@ee.kaist.ac.kr

Abstract
Receive-side scaling (RSS) is a technique that stores the arriving IP packets in the same flow into the

same hardware queue of a modern network interface card (NIC). It allows scalable processing of the

received packets by allowing exclusive access to the NIC queues by each CPU core. This removes the lock

contention when accessing the NIC queue, and it allows concurrent access to different queues by multiple

CPU cores.

One problem with the existing RSS mechanism, however, is that it maps the IP packets in the same

TCP connection to different NIC queues depending on the direction of the packets. In this paper, we

present symmetric RSS, which allows mapping the packets in the same TCP connection to the same NIC

queue regardless of whether they are upstream or downstream. The basic idea is to manipulate the RSS

seeds such that the RSS hashes of the IP packets in the reverse direction to take on the same values

with those in the forward direction. Since RSS hash calculation is done in the NIC hardware, it does not

consume extra CPU cycles and promises high performance.

1. INTRODUCTION
Receive-side scaling (RSS) is one of the widely-used NIC features that utilizes multiple CPU cores

concurrently for packet processing in high-speed networks. It stores the arriving IP packets in the same

flow into the same hardware RX queue of a modern NIC, and provides exclusive access to the queue

by each CPU core on a multicore system. This allows scalable processing of the received IP packets by

eliminating the lock contention by preventing the access to the same RX queue from multiple CPU cores.

RSS ensures storing of the packets in the same flow into the same reception (RX) queue by hashing the

five tuples in the TCP/UDP packet header (source/destination IPs and port numbers, and the protocol).

That is, the packets with the same RSS hash values will end up in the same RX queue. Typically, the

CPU core responsible for the RX queue processes the packets in the received order, and one does not

need to worry about out-of-order processing of the packets, which could reduce the throughput of a TCP

connection unintentionally by the packet processing middleboxes or software routers in the middle of the

network.

One problem with RSS, however, is that it could map the packets in the same TCP connection to

different NIC RX queues depending on the direction of the packets. This is because the RSS hash of

the packets in the reverse direction could take on a different value from that of the forward direction. It

is especially problematic for high-performance TCP-session processing systems such as stateful firewalls,

intrusion detection systems [3, 6, 7], and transparent WAN accelerators [1, 2] that need to monitor and

process the TCP packets in both directions. Having two CPU cores process the TCP packets in the same

1



connection requires sharing the data structures across different threads/processes, which often need to be

protected by a lock, undermining the original benefit of RSS.

In this paper, we present symmetric RSS, which allows mapping the packets in the same TCP connection

to the same NIC queue regardless of whether they are upstream or downstream. The basic idea is to

manipulate the RSS seeds such that the RSS hash of the IP packets in the reverse direction to take on

the same value with that in the forward direction. Since our symmetric RSS scheme does not change the

RSS algorithm itself, we can avoid re-hashing of the IP packets outside the NIC hardware. This allows

high-performance TCP session processing in the same CPU core without extra CPU cycles. We also

show that our symmetric RSS scheme does impair load balancing among the available CPU cores. We

provide theoretical analysis as well as experiment results in this paper. We believe that our symmetric

RSS scheme will be useful for any TCP packet processing systems that requires high scalability on a

multicore system.

2. SYMMETRIC RECEIVE-SIDE SCALING
We first describe the original RSS algorithm and propose an efficient way to map the TCP packets in

both directions into the same RX queue.

2.1 Original Receive-side Scaling Algorithm
Receive-side scaling (RSS) is a NIC feature that provides load balancing in processing received pack-

ets[5]. It first calculates the hash value based on the packet header using the Toeplitz hash function [4],

and decides which RX queue to store the packet by a modular operation. RSS can be applied to any byte

ranges in the IP/TCP/UDP header, but typically, it hashes the {source IP, destination IP, source port,

destination port, protocol} tuple. While we focus on IPv4 packets in this paper, the idea can be easily

applied to IPv6 packets.

Algorithm 1 RSS Hash Computation Algorithm

function ComputeRSSHash(Input[], RSK)

ret = 0;

for each bit b in Input[] do

if b == 1 then

ret ˆ= (left-most 32 bits of RSK);

end if

shift RSK left 1 bit position;

end for

end function

Algorithm 1 shows the pseudocode of the RSS hash function. The INPUT is the 5-tuple of IPv4 UDP

or TCP packets, which is 12 bytes in total. Random Secret Key (RSK), which is 40 bytes (320 bits),

is used as seed values that get mixed with the input values. Since the RSS algorithm is implemented

in recent NIC hardware for fast processing, modification of the RSS algorithm to support symmetric

mapping is difficult. However, RSK is part of the device driver and set into the NIC when the driver is

first loaded into memory. We focus on updating RSK to allow symmetric mapping.

2.2 Symmetric Receive-side Scaling Algorithm
The symmetric flow mapping needs to produce the same RSS hash value even if the source and desti-

nation IPs and port numbers are reversed.

2



ComputeRSSHash(srcIP :: dstIP :: srcPort :: dstPort,RSK)

= ComputeRSSHash(dstIP :: srcIP :: dstPort :: srcPort,RSK) (1)

Equation (1) shows the basic condition of the symmetric RSS queue mapping. We need to find the

condition of RSK that satisfies the equation.

Rule 1. During calculation of nth bit of INPUT, only the nth to (n + 31)th bit range of RSK is used.

We observe that not every bit of RSK is used to get the hash value. Given an input bit, only 32 bits

of RSK are used for the XOR operation. That is, for n-bit INPUT, only (n− 1) + 32 bits from RSK are

used to produce the hash value. If INPUT is larger than or equal to 290 bits, RSK will wrap around to

the first bit. For a specific bit of INPUT, a fixed bit range of RSK is used as explained in Rule 1.

INPUT Length Input Bit Range RSK Bit Range

Source IP 32 bit 1 - 32 1 - 63

Destination IP 32 bit 33 - 64 33 -95

Source port 16 bit 65 - 80 65 -111

Destination port 16 bit 81 - 96 81 - 127

Table 1: RSK bit ranges used in the calculation of IPv4/TCP packet fields

Using Rule 1, we can derive the bit ranges of RSK used in the calculation of the hash value for an

IPv4/TCP (or UDP) packet. For example, the first byte (first eight bits) of INPUT uses the first 39 bits

in RSK. The second input byte (from 9th to 16th bit) needs a RSK bit range of 9th to 47th. In this way,

we calculate the bit ranges of each element in INPUT in Table 1.

Let RSK[A : B] be a bit range of RSK from Ath bit to Bth bit.

i) RSK[1 : 63] = RSK[33 : 95]

ii) RSK[65 : 111] = RSK[81 : 127] (2)

Using Table 1, we can convert Equation (1) to Equation (2). This equation requires that the RSK bit

ranges for source and destination IPs take on the same values, as well as for the source and destination

ports. If RSK bit ranges satisfy this condition, the RSS hash values will be the same for TCP packets in

both directions.

i) RSK[1 : 15] = RSK[17 : 31] = RSK[33 : 47] = RSK[49 : 63] = RSK[65 : 79]

= RSK[81 : 95] = RSK[97 : 111] = RSK[113 : 127]

ii) RSK[16] = RSK[48] = RSK[80] = RSK[96] = RSK[112]

iii) RSK[32] = RSK[64] (3)

We note that Equation (2) has overlapping regions, so the condition breaks into three non-overlapping

parts as shown in Equation (3). One example of RSK satisfying Equation (3) is in Figure 1. 0x6d5a

shows a group of 16 bits (in 2 bytes). Every group except the second and fourth group has exactly same

bit sequence. The second and fourth group have a different bit in 8th bits, and other bits are the same

as the other groups.

3



0x6d5a 0x6d5b 0x6d5a 0x6d5b

0x6d5a 0x6d5a 0x6d5a 0x6d5a

0x6d5a 0x6d5a 0x6d5a 0x6d5a

0x6d5a 0x6d5a 0x6d5a 0x6d5a

0x6d5a 0x6d5a 0x6d5a 0x6d5a

Figure 1: A sample RSK that satisfies Equation(3)

Rule 2. During calculation of nth byte of INPUT, only the nth to (n+5)th byte range of RSK is used.

We can also re-phrase Equation (1) in the byte level by changing Rule 1 to Rule 2, which is simpler

than the bit-level condition.

Let RSK[[i]] be ith bytes, 1 ≤ i ≤ 80

i) RSK[[1]] = RSK[[3]] = RSK[[5]] = RSK[[7]]

= RSK[[9]] = RSK[[11]] = RSK[[13]] = RSK[[15]]

ii) RSK[[2]] = RSK[[4]] = RSK[[6]] = RSK[[8]]

= RSK[[10]] = RSK[[12]] = RSK[[14]] = RSK[[16]] (4)

We note that the set of RSK that satisfies Equation (4) is a subset of the set satisfying Equation (3) .

One example of RSK that satisfies Equation (4) is in Figure 2.

0x6d5a 0x6d5a 0x6d5a 0x6d5a

0x6d5a 0x6d5a 0x6d5a 0x6d5a

0x6d5a 0x6d5a 0x6d5a 0x6d5a

0x6d5a 0x6d5a 0x6d5a 0x6d5a

0x6d5a 0x6d5a 0x6d5a 0x6d5a

Figure 2: A sample RSK that satisfies Equation(4)

2.3 Analysis
We have identified two RSK independent conditions that satisfy the symmetric RSS algorithm. In this

section, we analyze whether the new RSK affects the level of load balancing compared with the original

RSS.

Let Ki(1 ≤ i ≤ 320) be the ith bit in the new RSK, Pj(1 ≤ j ≤ 96) be the jth bit in input bit sequence,

and Ri,j(1 ≤ j ≤ 32) be the jth bit in the result of the RSS function after i iterations in the for loop in

Algorithm 1. After the first iteration in Algorithm 1, each bit of the result value becomes as follows:

R1,j = P1&Kj , (1 ≤ j ≤ 32)

After the second iteration,

R2,j = R1 ∧ P2&K(j+1), (1 ≤ j ≤ 32)

So, after n iterations in the loop,

4



Rn,j = Rn−1,j ∧ Pn&K(j+n−1)(1 ≤ j ≤ 32)

= (

n∑
i=1

Pi K(i+j−1)) mod 2 (5)

Since our input is 96 bits and the new RSK repeats in a unit of 16 bits by condition 4, the final hash

value (RET ) returned by the function is,

RETj = R96,j

= (

96∑
i=1

Pi K(i+j−1)) mod 2

= (

16∑
i=1

K(i+j−1)(

6∑
n=0

Pi+16n)) mod 2

= (

16∑
i=1

K(i+j−1)Qi) mod 2, where Qi =

6∑
n=0

Pi+16n (6)

From Equation 6, we find two corner cases for RSK that would produce undesirable results.

Rule 3. If all bits in RSK are zero, the hash value is zero.

Rule 4. If all bits in RSK are one, all bits in the hash value are either 0 or 1.

It is easy to see that Rule 3 holds. If Ki is one, every RETj (RETj =
∑96

i=1 Pi) takes on either 0 or

1 regardless of j. These two corner cases of RSK limits the output value to a small space, which makes

it unsuitable for load balancing among multiple queues. From (5), we also find that if RSK is an n-bit

sequence, the result is also repeated as an n-bit sequence. As our result needs a 16-bit sequence, the

returned hash value has a 16-bit pattern.

RET = RET1RET2RET3...RET16RET1RET2RET3...RET16

=

16∑
i=1

216−i ∗RETi +

16∑
i=1

232−i ∗RETi

= (216 + 1) ∗
16∑
i=1

(216−i ∗RETi) (7)

Since
∑16

i=1(216−i ∗RETi) takes on a random value in the 16-bit value space if RETi is random, we find

that (RET mod (number of RX queues)) would take on a random value if the number of RX queues

is smaller than 65,536.

2.4 Experiments
We conduct experiments that show even load balancing of our symmetric RSS. We create 100,000 TCP

packets with random source and destination IPs and port numbers, and calculate the hash values for each

packet using the RSS algorithm.. We test with various numbers of RX queues and use two RSK sets as

shown in Figure 3.

For comparison with the original RSK, we plot the coefficient of variance (CV) in Figure 4. If CV is

close to zero, it implies that the variance between the queue size is small and load is balanced among

the queues. As shown in the Figure, both symmetric RSS and original RSS have CV values smaller than

5



0x6d5a 0x6d5a 0x6d5a 0x6d5a

0x6d5a 0x6d5a 0x6d5a 0x6d5a

0x6d5a 0x6d5a 0x6d5a 0x6d5a

0x6d5a 0x6d5a 0x6d5a 0x6d5a

0x6d5a 0x6d5a 0x6d5a 0x6d5a

<Symmetric RSS>

0x6d5a 0x56da 0x255b 0x0ec2

0x4167 0x253d 0x43a3 0x8fb0

0xd0ca 0x2bcb 0xae7b 0x30b4

0x77cb 0x2da3 0x8030 0xf20c

0x6a42 0xb73b 0xbeac 0x01fa

<Original RSS>

Figure 3: RSK sets used in the experiments

0

0.002

0.004

0.006

0.008

0.01

4 5 6 7 8 9 10 11 12

C
V

 (
C

o
ef

fi
ci

en
t 

o
f 

V
a

ri
a

ti
o

n
) 

Number of RX queues in a NIC 

SymmetricRSS

OriginalRSS

Figure 4: CV of the numbers of packets distributed to RX queues

0.005. From this, we find that our symmetric RSS algorithm provides a similar level of load balacing with

that of the original RSS algorithm.

3. CONCLUSION
Load balancing of the received packets into multiple cores is the key to high performance TCP session

processing. Receive-side scaling is a simple and efficient solution for load balancing of the packets into

multiple RX queues; however, it cannot map the packets in the same TCP connection to the same RX

queue, which creates an extra overhead in managing the packets in the same TCP connection. We find

that preparing RSK to have a repeating 16-bit pattern makes the original RSS algorithm symmetric for

the packets in the same TCP connection. While this new RSK set returns a 32-bit hash value with a

16-bit pattern, we show that the new seeds do not affect the level of load balancing compared with that

of the original algorithm if we avoid a few corner cases.

4. REFERENCES
[1] B. Agarwal, A. Akella, A. Anand, A. Balachandran, P. Chitnis, C. Muthukrishnan, R. Ramjee, and

G. Varghese. Endre: An end-system redundancy elimination service for enterprises. In Proceeding of

the USENIX Symposium on Networked Systems Design and Implementation, pages 419–432, 2010.

[2] A. Anand, V. Sekar, and A. Akella. Smartre: an architecture for coordinated network-wide

redundancy elimination. In Proceedings of the ACM SIGCOMM 2009 Conference On Data

Communication, SIGCOMM ’09, pages 87–98, New York, NY, USA, 2009. ACM.

[3] M. Jamshed, J. Lee, S. Moon, I. Yun, D. Kim, S. Lee, Y. Yi, and K. Park. Kargus: a highly-scalable

software-based intrusion detection system. In Proceedings of the ACM Conference on Computer and

6



Communications Security (CCS), 2012.

[4] H. Krawczyk. Lfsr-based hashing and authentication. In Proceedings of the 14th Annual

International Cryptology Conference on Advances in Cryptology, CRYPTO ’94, pages 129–139,

London, UK, UK, 1994. Springer-Verlag.

[5] Microsoft. MSDN: Introduction to Receive-Side Scaling.

http://msdn.microsoft.com/en-us/library/windows/hardware/ff556942%28v=vs.85%29.aspx,

2012. [Online; accessed 24-April-2012].

[6] M. Roesch. Snort - Lightweight Intrusion Detection for Networks. In Proceedings of the 13th

USENIX Conference on System Administration, pages 229–238, 1999.

[7] G. Vasiliadis, M. Polychronakis, and S. Ioannidis. Midea: a multi-parallel intrusion detection

architecture. In Y. Chen, G. Danezis, and V. Shmatikov, editors, ACM Conference on Computer and

Communications Security, pages 297–308. ACM, 2011.

7


