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Abstract—Modern state-of-the-art deep learning (DL) appli-
cations tend to scale out to a large number of parallel GPUs.
Unfortunately, we observe that the collective communication
overhead across GPUs is often the key limiting factor of per-
formance for distributed DL. It under-utilizes the networking
bandwidth by frequent transfers of small data chunks, which also
incurs a substantial I/O overhead on GPU that interferes with
computation on GPU. The root cause lies in the inefficiency of
CPU-based communication event handling as well as the inability
to control the GPU’s internal DMA engine with GPU threads.

To address the problem, we propose a GPU-driven code
execution system that leverages a GPU-controlled hardware DMA
engine for I/O offloading. Our custom DMA engine pipelines
multiple DMA requests to support efficient small data transfer
while it eliminates the I/O overhead on GPU cores. Unlike existing
GPU DMA engines initiated only by CPU, we let GPU threads
to directly control DMA operations, which leads to a highly
efficient system where GPUs drive their own execution flow
and handle communication events autonomously without CPU
intervention. Our prototype DMA engine achieves a line-rate
from a message size as small as 8KB (3.87x better throughput)
with only 4.32us of communication latency (9.1x faster) while
it incurs little interference with computation on GPU, achieving
1.82x higher all-reduce throughput in a real training workload.

I. INTRODUCTION

Modern machine learning (ML) applications tend to harness
an increasingly larger number of accelerators (especially GPUs
in this work) [7], [10]. State-of-the-art deep learning (DL)
algorithms often need to scale out to thousands of GPUs for
higher throughput and accuracy [10]. Unfortunately, this poses
a substantial communication overhead to the entire system,
which harms GPU utilization by delaying or interfering with
numeric computation.

The communication overhead mainly arises in two different
aspects. First, collective communication (e.g., all-reduce, split-
and-gather, all-to-all, etc.), which is widely adopted in most of
popular DL algorithms, often splits sending data into multiple
small chunks for pipelining or to send to multiple different
destinations. The chunk size tends to get smaller as we scale
out, which is detrimental to efficient utilization of networking
bandwidth. Second, popular communication libraries for GPUs
such as NCCL [16] and RCCL [3] often incur a severe 1/O
overhead on GPU. This is because they commonly leverage
memory-mapped I/O (MMIO) for data copies between GPUs,
which consumes a substantial amount of GPU resources (i.e.,
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core cycles and L2 cache/DRAM bandwidth). We observe that
concurrent execution of collective communication and numeric
computation on GPU interferes with each other, which often
drops the parallel computation throughput by 45.0% while
achieving only 53.6% of the peak communication throughput
in our real training application (BERT-Large [4], see details
in Section II-C).

Existing systems tackle only one of the two issues as it is
difficult to handle both at the same time. For example, we can
avoid the I/O overhead by offloading the I/O to a hardware
DMA engine instead of MMIO using GPU threads. The
DMA engine is already implemented on commodity GPUs,
but unfortunately, it is initiated only by CPU threads. Thus,
leveraging the DMA engine enrolls CPU on the critical path
of communication. This incurs the CPU-GPU synchronization
overhead that increases communication latency, especially
detrimental to the throughput of small data chunk transfer.
For example, existing implementations that leverage the DMA
engine in popular DL frameworks often incur hundreds of us
of communication latency. Similarly, if we do not leverage the
DMA engine for low-latency communication with small data
chunks, we sacrifice the I/O overhead on GPU, instead.

This paper proposes GPU-driven system, a communication-
motivated DL system design. The key idea of GPU-driven
system is autonomous execution control of GPU code without
any control by external devices. This regime tightly connects
computational power of every GPU core across the entire
cluster by allowing GPU threads to communicate directly with
remote GPUs without any external control signals, obtaining
low-latency communication. At the same time, to avoid the I/O
overhead on GPU, we design a GPU-controlled DMA engine.
Specifically, our custom DMA engine is designed to be directly
initiated by GPU threads for I/O offloading, which avoids the
heavy MMIO without CPU intervention.

Our evaluation shows that our DMA engine prototype is
especially beneficial for small messages, achieving a high
communication throughput (3.87x over cudaMemcpy with
8KB messages) at low latency (9.1x faster over CPU inter-
vention). Furthermore, it does not interfere with computation
on GPU, which delivers both computation and communication
throughput gains over using MMIO-based communication
libraries (1.82x faster all-reduce in BERT-Large [4] training,
see Section [V-B). We expect that our design would help a
variety of distributed DL applications, including data-, tensor-,
and expert-parallelism.
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Fig. 1: Data dependency between GPUs decreases the inter-
GPU data rate due to event handling delays. Solid lines
refer to actual data rate (for sending one message at a time)
in TensorFlow’s CPU-controlled communication crossing a
PClIe v3 or a NVLink v3 switches while dashed lines indicate
the ideal data rate without event handling delays.

II. BACKGROUND & MOTIVATION
A. Small Data Transfer in Collective Communication

Collective communication consists of several communica-
tion primitives that concurrently exchange the data across mul-
tiple GPUs, which is widely adopted to implement various par-
allelism methods in distributed DL. Popular use cases include
all-reduce for data-parallelism, split-and-gather for tensor-
parallelism [9], [23], and all-to-all for expert-parallelism [5].
As the number of employed GPUs gets larger, the size of unit
data transfer in collective communication becomes smaller as
it splits the local data into multiple pieces to be delivered
to different GPUs. This small transfer size makes the overall
performance of collective communication highly dependent
on the control plane overhead before and after each data
transfer. Unfortunately, we observe that the control plane
overhead either with CPU-controlled or even GPU-controlled
communication is pretty substantial (See Section II-B and
Section II-C). Also, existing workarounds (e.g., fensor fu-
sion [22]) that batch a large amount of data to avoid small
transfers would not completely address the problem as they
trade off computational throughput by intentionally delaying
data transfer.

B. External Execution Control Overhead

Existing GPU program execution heavily relies on an ex-
ternal processor (i.e., CPU) to submit GPU commands for
kernel execution or data transfer. Unfortunately, this model
often incurs a large overhead due to the delay for command
delivery from the host side to GPU hardware queue (i.e.,
stream). One can use the conventional GPU event interface
(i.e., cudaEvent) to hide the delay, but it would also suffer
from fairly substantial delay incurred by event handling. When
adopted to inter-GPU communication (unlike NCCL [16]),
which we call CPU-controlled communication, we observe
that event handling becomes the primary cause for large
communication delay rather than the data transfer itself.

We consider a common communication scenario where two
GPUs have a data dependency — one GPU receives computa-
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Fig. 2: CPU intervention in inter-GPU event handling.

Overhead Detail | Delay (us)
Initiation
Trigger send ready event on the GPU 3.8
Sync comp. stream and comm. stream 11.6
Completion Check
Event polling gap 583
Delay of pthread mutex lock 58.7
GPU kernel launch overhead 19.2
Total [ 1516

TABLE I: Breakdown of the constant overhead of inter-GPU
data transfer using TensorFlow in Fig. 1.

tion results of another GPU to use them as inputs of its own
computation. In every data transfer, event handling is needed
to check the dependency between the copy and the GPU
commands around the copy operation, which degrades the
actual data rate between GPUs. Fig. | compares the ideal inter-
GPU data rate (cudaMemcpy throughput) with the actual data
rate in TensorFlow’s CPU-controlled communication, which is
still used along with NCCL especially for model-parallelism
implementations. We see that the event handling overhead
with cudaMemcpy drastically lowers the data rate both in the
PCIe and NVLink interfaces. We explain two event handling
scenarios when GPU A sends data to GPU B.

1) Runtime Intervention for the Control: CPU can serve as
an intermediary to deliver an event between two communicat-
ing GPUs. In fact, if GPUs are located in different NUMA
nodes or on different machines, the runtime intervention by
CPU is required for communication. Also, some frameworks
like TensorFlow implement a generic interface that always uses
CPU for GPU event handling regardless of the placement.
Fig. 2 illustrates the event handling overhead due to CPU
intervention when GPU A sends its data to GPU B that plans
to run the next command with the data.

We notice three places for the overhead. First, it is inefficient
for a CPU thread to poll GPU events because the event
interface disallows the CPU thread to monitor multiple events
at the same time. While it takes only ~3us for a dedicated
busy-waiting CPU thread to be notified of a triggered GPU
event,' this approach does not scale when an application has to
run many parallel tasks, which will run many polling threads.
Instead, the event polling loop of TensorFlow uses only one
CPU thread, which incurs a ~58.3us of polling gap on average
(see Table I). Second, it takes time to wake up the CPU thread

IPlease refer to the experiment setup in Section IV.
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Fig. 3: Comparison between CPU-controlled and GPU-controlled communication — the latter has two different approaches,
which leverage (b) MMIO (like NCCL) or (c) directly initiated DMA (this work). DEV refers to any kinds of devices that can

implement our DMA engine.

that invokes the callback function of the triggered event. In
TensorFlow, it takes ~58.7us for the callback thread to acquire
the mutex lock from when it is released by the polling thread.
This delay could be reduced to as low as Sus if both threads
are running on the same CPU core, but co-locating the threads
or even merging them into a single one would increase the
event polling interval as well as the overall processing time.
Lastly, it is inefficient for the callback thread to deliver the
computation command to GPU B. Delivering the event signal
to GPU B would take only 2~3us if implemented efficiently,’
but we need to deliver the callback command binary as well.
This extra delay could be avoided if we can deliver the GPU
command ahead of time and trigger it later on the CPU side,
but this is not supported by commodity GPU.

2) Asynchronous Control: If the GPUs are under the same
NUMA node, CPU can reserve a GPU event to be triggered
asynchronously so that GPUs can directly communicate with
each other when the event occurs. In this case, one can deliver
the callback command to GPU B before the actual event and
use the conventional GPU event interface (i.e. cudaEvent or
a higher-level wrapper such as CUDA Graphs [11]) to trigger
the callback command on GPU B with GPU A’s event. Ideally,
this should take as short as sending a single bit from GPU A to
GPU B. However, we find that triggering a GPU event (~4us)
and waking up a dependent GPU command (10~20us) are
disappointingly slow — it ends up taking as much as sending
the command binary to the GPU at runtime. We suspect that
this is due to inefficient hardware implementation on GPU
for event handling. In TensorFlow, this overhead contributes
to the delay for initiating a transfer that depends on GPU
computation as shown in Table I.

C. I/O Overhead of GPU-controlled Communication

Since CPU intervention incurs a large overhead, how about
managing the communication with GPU itself? NCCL [16] *
leverages GPUDirect [17] to enable this approach, which
exposes the GPU memory space for peer-to-peer access so

2This is roughly estimated based on that it takes ~2us for a GPU thread to
read a 4-byte data on the host DRAM and it takes ~3ps for a busy-waiting
CPU to read a GPU event.

3Equally applied to RCCL [3] on AMD GPU as well. For convenience,
we borrow the terms from CUDA or NVIDIA GPUs, which can be easily
converted into corresponding terms in OpenCL or AMD GPUs.

that GPU threads can read/write data to/from another GPU.*
As GPU threads can directly invoke data copy, they can handle
communication events efficiently without the involvement of
CPU. Since commodity GPU hardware does not allow GPU
threads to initiate its own DMA engine, GPU-controlled com-
munication leverages MMIO, which will implicitly conduct
DMA when GPU threads write data on the mapping. Fig. 3
compares CPU-controlled and GPU-controlled communica-
tion. The former (Fig. 3a) takes the following steps: (1) CPU
is notified when data is ready, (2) CPU initiates the DMA
engine, and (3) DMA copies the data. On the other hand,
GPU-controlled communication with MMIO (Fig. 3b) follows
(D CPU creates a memmory map (mmap) of the destination
GPU’s address space prior to the runtime execution, (2) data
is ready at runtime, and (3) GPU threads copy the data into
the mmap’ed region, which implicitly conducts DMA copy.

Unfortunately, data copying by GPU threads often heavily
interferes with parallel kernel computation, especially due to
L2 cache pollution and warp scheduler operations. Specifically,
a data-copy GPU thread needs to load the data onto its register
file for data transfer, but this pollutes the L2 cache when
reading DRAM as bypassing the L2 cache is not supported
by commodity GPUs [20]. It leads to severe performance
degradation over initiating DMA directly, as the latter copies
the data on DRAM directly to the I/O bus (PCle or NVLink).
Additionally, the copying threads frequently issue load/store
instructions that often make warp schedulers busy, which
makes other threads for parallel computation yield their clock
cycles. Although the affected computation threads are limited
to those that co-run warp schedulers with data-copy threads,
they delay the entire kernel by falling behind the other threads.

To analyze the impact of the contention, we measure
the slowdown of two different GPU kernels that heavily
access only a specific type of GPU resources each: L2
cache (1.96 TBps read) and warp schedulers (2.02 IPC),’
respectively (all numbers measured on a V100 GPU), while

4Actually, CPU-controlled communication also leverage GPUDirect to
conduct cudaMemcpy between peer GPUs efficiently without crossing the
root complex, but its execution path is different from that of GPU-controlled
communication.

SHeavy usage of warp schedulers means frequent instruction fetches, i.e.
large instructions per cycle (IPC). > 99.2% of instructions are FFMA.



running concurrently with NCCL (v2.11.4) 64 MB all-gather®
kernels using 8x V100 GPUs. We leverage NVIDIA Visual
Profiler (NVVP) and Nsight Compute to verify that (1) the
L2 cache kernel shows near-zero DRAM access and L1 data
cache hit rate and (2) the warp schedulers kernel shows near-
zero L2 cache/DRAM throughput. We have also verified the
concurrency of computation and all-gather kernels and no
other CPU/GPU activities during the experiment. In this ex-
periment, the slowdowns due to L2 cache and warp schedulers
contention are up to 2.35x and 2.00x, respectively, where it
slows down either the computation or the concurrent NCCL
communication (when one side is degraded less, the other
side tends to be impacted more). This result shows that heavy
contention could arise depending on the GPU resource usage
of concurrent computation kernels.

We run a microbenchmark to evaluate the contention of
NCCL all-reduce during data-parallel training of a BERT-
Large [4] model. This model performs 32 MB of all-reduce at
a time, which issues 4 MB data transfer in parallel with eight
GPU workers. On a server with 8x V100 GPUs (connected
with a single PCle switch (16x PCle v3)), the parallel com-
putation throughput drops by 45.0% while all-reduce achieves
only 5.0 GBps on average, degraded to 53.6% of the peak
throughput without the interference. On a server with 8x
A100 GPUs (connected with a NVSwitch (NVLink v3)),
the slowdown of all-reduce is even worse — the parallel
computation throughput drops by 14.3% while the NCCL all-
reduce operation achieves only 30.9% of the peak throughput
(49.0 GBps).

III. DESIGN & PROTOTYPE IMPLEMENTATION

This section presents our approach with the GPU-driven
code execution that avoids the communication overhead on
GPU without CPU intervention.

A. GPU-controlled DMA Engine

We claim that a GPU-controlled DMA engine (Fig. 3c)
can eliminate the communication overhead, which in turn
serves as the basis of our GPU-driven system. The GPU-
controlled DMA engine enables a GPU thread to directly
initiate DMA operations when the data is ready ((1)), which
will immediately push the data into the I/O bus without
wasting GPU cycles ((2)). While this would deliver low-
latency communication without the MMIO overhead, it is non-
trivial to realize this feature. In fact, an ideal implementation
would be to modify the existing DMA engine on GPU to
support GPU-controlled DMA, but it is infeasible as we cannot
update the GPU hardware.

Instead, we consider employing an external device as illus-
trated in Fig. 3c at the cost of extra communication latency
from GPU threads. We pursue a general DMA engine design
that can be implemented as either software or hardware on any
hardware platforms (e.g., CPU, GPU, SmartNIC, FPGA, etc.)
or I/O bus types (PCle, NVLink [19], or Infinity Fabric Link

SWe use all-gather as it only performs communication without any extra
computation such as reduction in all-reduce.

(xGMI) [2]). Regardless of the platform, all implementations
need to share the same runtime interface for GPU kernels.
Also, the DMA interface should support low latency and
flexibility while meeting the different requirements of software
and hardware engines. One key issue lies in the design of
a DMA request message from GPU, which we call a send
request (SR), as it has significant impact on the performance
and the implementation complexity.

In terms of hardware, receiving a large SR whose size
exceeds the data bus width (64 bits in modern 64-bit proces-
sors) will take multiple cycles, which would require SR buffer
management, reassembly of segmented SRs, and handling
dropped SRs (caused by SR buffer overflow). As implementing
them on hardware would significantly complicate the logic and
increase the spatial cost, we share an 8-byte SR design for both
software and hardware engines. While it is challenging to hold
the metadata of a general memory copy (two addresses and
a copy length) within 8 bytes, we address this by adopting a
small number of send/recv buffers, which reduces the address
space by replacing general 8-byte addresses with a few bits
of buffer indices. This is feasible thanks to the static nature
of collective communication where the communicating entities
are fixed — it enables offline pre-scheduling of data transfers so
that receivers know which data arrives at which buffer without
any additional metadata received at runtime. Meanwhile, the
DMA requests on different buffers are pipelined for low
latency and high throughput.

In terms of software, keeping an SR buffer would be
more efficient as it would otherwise require extra control to
prevent overwriting a previous SR. That is, unlike a hardware
implementation where a fully received SR can immediately
trigger the internal DMA pipeline at every cycle, a software
thread could overwrite an unread SR unless the sender (GPU)
coordinates with the receiver (the DMA stack) prior to sending
a new SR. Unfortunately, such coordination would incur an
extra delay as the GPU needs to read a remote flag on the
DMA stack before sending an SR. We address this issue by
maintaing a specialized ring buffer for SR, where the GPU
checks only a local replica of the buffer head before sending
an SR, and the replica is asynchronously updated by the
DMA stack. This removes the coordination delay from the
critical path of communication while providing a consistent
SR interface for both software and hardware engines.

B. DMA Engine Prototype Implementations

We first present our software DMA engine that harnesses
CPU as the data plane while GPU serves as the control plane.
Then, we introduce our hardware DMA engine that allows us
to glimpse at the high performance achieved by an ideal imple-
mentation. Both software and hardware engines are designed
for cross-machine communication, while current prototype
implementations support only intra-machine communication.

1) Software Engine: We implement a CPU thread that
busy-waits for SRs and invokes cudaMemcpy accordingly,
i.e., it leverages the existing hardware DMA engine on the
sender GPU. Note that this is different from CPU-controlled
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Module Name # Capacity # Capacitry
FPGA Stack 14253 3.34% | 188 6.93%
PCle 1364 0.32% 13 0.48%

TABLE II: Resource usage of a single hardware DMA stack.

communication as we use CPU only for data plane operations
while the control plane (event handling) is managed by GPU
threads. For high throughput, the busy-waiting loop drains
all SRs in the ring buffer and invoke cudaMemcpy once
for sending on a continuous memory space. Also, instead
of slow cudaEvent, we use MMIO for the CPU-GPU
communication that delivers SR, SC (Send Completion), and
RC (Receive Completion) signals, which takes only 2~3us.

Alternatively, the software engine can perform MMIO with
CPU threads instead of initiating the hardware DMA engine,
which can reduce the cudaMemcpy overhead (i.e., sending a
copy request from CPU to the DMA engine on GPU). How-
ever, this approach fails to achieve the line rate in most host
CPU architectures due to their poor throughput of crossing the
PClIe root complex [24], [25]. This issue might be resolved in
the future CPU architectures or by leveraging ARM cores on
SmartNICs [26], which is left as our future work.

2) Hardware Engine: We implement a custom hardware
with FPGA for DMA operations, which delivers two bene-
fits over our software engine prototype. First, our hardware
engine avoids the extra communication delay incurred by
the overhead of cudaMemcpy as it performs DMA directly.
Second, unlike existing hardware DMA engines on GPU, our
custom hardware implements pipelining of multiple parallel
DMA operations. This helps achieve a high data rate even for
sending small data chunks. Table II shows resource usage of
our implementation on an Intel Arria 10 FPGA.

Note that our FPGA prototype is limited to support the
communication between only two GPUs and it does not
support NVLink as there is no programmable hardware (or an
off-the-shelf device) that can connect to NVLink. Instead, we
consider it as a proof-of-concept that demonstrates the ideal
benefit rather than a practical device that can be deployed
on a large scale. A more practical implementation would be
realized by future advances in CPU, GPU, or SmartNICs.

C. GPU-driven System Design

GPU-controlled DMA engines would be easily adopted by
existing systems, e.g., NCCL can replace its MMIO with
initiating our DMA engines. However, existing systems would
not fully exploit the benefit of GPU-controlled communication
as the communication APIs are launched by CPU - the CPU
intervention barrier still remains between computation and
communication. We propose a GPU-driven system design that
removes this barrier and tightly connects computation and
communication by running the entire DL application in a
single kernel, called a loop kernel. Our key observation is that
online dynamic scheduling is unnecessary as DL workloads
are typically deterministic at runtime. Unlike existing systems
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Fig. 4: Performance comparison between the CPU-controlled
communication (C-Drv) and the GPU-controlled DMA en-
gines (G-Drv-S (software) and G-Drv-H (hardware)).

that dynamically launch GPU kernels using CPU at runtime,
our GPU-driven system automatically merges all kernels into a
loop kernel (one for each GPU) at compile time and launches
it when the application starts, which will repeatedly run the
application during the entire lifetime. A loop kernel is gener-
ated by a code generator that reads an operational graph of
a DL application and automatically assembles corresponding
code snippets of GPU operators to build loop kernel code.

GPU-driven system design lets GPUs fully control the ap-
plication, which would minimize the event handling overhead
for inter-GPU communication. While it often delivers the
computation-side benefit as well by enabling finer-grained
GPU core scheduling inside the loop kernel, we leave it as
our future work and focus on the communication-side benefits
in this paper.

IV. PRELIMINARY EVALUATION

Hardware. We use an Intel Xeon Gold 5118 CPU (24 Icores,
2.30 GHz) and eight NVIDIA V100 GPUs connected through
a single PCle v3.0 switch. Our hardware DMA engine is
implemented on an Intel Arria 10 FPGA.

Software. We evaluate our system using CUDA 11.3, and all
baselines for comparison use their own latest recommended
versions of software dependencies at the time of writing.

A. DMA Engine Performance

Fig. 4 compares the performance of communication between
two GPUs with our prototype DMA engine over a CPU-
controlled communication baseline. We measure the through-
put by sending many parallel messages at the same time
and reporting the maximum throughput achieved with varying
message sizes. For latency measurements, we implement a
ping-pong application and report one-way latency — unlike
throughput measurements, this includes communication event
handling delays. This experiment assumes a favorable scenario
for the CPU-controlled baseline where we can adopt the
asynchronous control (explained in Section II-B2). In this
scenario, a one-way trip requires triggering only two GPU
events and two stream synchronizations.

In the left graph of Fig. 4, our software engine (G-Drv-S)
shows the same throughput as that of C-Drv, since both use
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Fig. 5: BERT-Large data-parallel training throughput and
average latency per iteration with varying numbers of GPUs
(sequence length 384, batch size 10, mixed-precision).

cudaMemcpy for the data-plane. In contrast, our hardware
engine (G-Drv-H) shows a huge throughput improvement,
saturating the bandwidth with only 8 KB messages while G-
Drv-S needs 4 MB messages for saturation. This is because the
hardware DMA engine pipelines processing multiple DMA re-
quests while cudaMemcpy cannot. This improvement would
be especially beneficial when GPU sends multiple messages
to different destinations at the same time, e.g., all-to-all
communication for expert-parallelism, which is popular for
scaling out state-of-the-art Transformer-based models [5].

We note that the maximum achieved throughput of G-Drv-H
is 3.68% lower than G-Drv-S. This is because an external
DMA stack needs to send both read and write requests to
sender and receiver GPUs, respectively, while the native DMA
engine on the sender GPU needs to send only write requests.
However, as the gap is small, it would not affect the end-to-end
application performance much.

The right graph of Fig. 4 shows that the one-way latency of
C-Drv is at least ~39.3us on average. In contrast, G-Drv-S and
G-Drv-H achieve 3.5x and 9.1x better latency, respectively.
This is because our DMA engines handle the communication
events directly in GPU threads while C-Drv relies on the
cudaEvent interface that suffers from large overhead to
trigger the events and synchronize streams. This improvement
would be especially beneficial when GPUs perform split-and-
gather of intermediate results to distribute the workload, as
in tensor-parallelism [9], [10]. One thing to note about our
DMA engine is that the benefit is obtained with little GPU
cycle consumption. We evaluate this in the following section.

B. Computation-Communication Interference Evaluation

To compare the interference between computation and com-
munication of using NCCL against using our DMA engine, we
evaluate data-parallel training throughput of G-Drv-S by train-
ing one of the representative NLP models, BERT-Large [4],
with two comparison baselines using NCCL: Megatron-
LM [10] (PyTorch [l]-based framework with NCCL) and
PT-TRT (PyTorch+TensorRT [18]+NCCL). For baseline ex-
periments, we use the official BERT-Large implementations
from the official public repositories [13], [15] without code
modification, and leverage their provided Docker container

images without modification except that we upgrade NCCL
into version 2.11.4. We use TensorRT version 7.1.2.

Fig. 5 shows that G-Drv-S outperforms Megatron-LM and
PT-TRT by 2.46x and 2.12x with 8 GPUs, respectively. While
G-Drv-S delivers computational gains from our GPU-driven
system design (Section III-C), we observe that a larger gain
comes from benefits of using our DMA engine. Specifically,
64.5% of the end-to-end gap between G-Drv-S and PT-TRT
with 8 GPUs is obtained as NCCL operations slow down due
to the interference of MMIO with back-propagation compu-
tation, showing only 5.0 GBps of all-reduce throughput. On
the other hand, our DMA engine suffers near-zero interference
by initiating DMA directly instead of using MMIO, achieving
9.10 GBps of all-reduce throughput (1.82x faster).

V. DISCUSSION & FUTURE WORK & RELATED WORK

We expect that hardware advances in near future would
enable more efficient implementations. For example, imple-
menting our software DMA engine on SmartNIC would
avoid the throughput issue of the PCle root complex [25]
via direct PCle connection with GPUs (e.g., NVIDIA H100
CNX [14] combines GPU with SmartNIC), which enables
efficient MMIO on SmartNIC. NVIDIA announces that they
are willing to put hardware accelerators for inter-GPU com-
munication on SmartNICs (e.g., all-to-all engine on NVIDIA
BlueField-3 [12]), which implies that a similar implementation
with our hardware engine might be realized in the future.
Additionally, host CPU architectures in the future may fix
the root complex issue, which will enable our software DMA
engine to replace cudaMemcpy with CPU-side MMIO, or
even more efficientlyy, DMA engines on CPU (e.g., Intel
I/OAT [6] or AMD PTDMA [8]).

ACE [21] proposes offloading the entire collective com-
munication logic to a hardware accelerator that resides on
intra-machine fabric, which cannot be extended to an external
network (Ethernet, Infiniband, etc). Our work differs from
ACE as it is generally applicable to any (R)DMA networking
and we can reuse most of existing software logic in popular
collective communication libraries.

VI. CONCLUSION

This paper envisions a GPU-driven code execution system
that enables autonomous control of GPU throughout the entire
lifetime of DL applications. We present the GPU-controlled
DMA engine at the heart of the GPU-driven system that
enables GPUs to communicate with each other without any ex-
ternal control. To avoid interference between computation and
communication, we design our DMA engine to consume little
GPU resources, so that its high communication performance
is delivered without sacrificing computational throughput of
GPU. While our software engine already shows benefits over
commodity hardware, we also present a proof-of-concept
of a hardware engine that shows even higher performance,
which indicates that our system performance would be further
improved with future advances in commodity hardware such
as CPU, GPU, or SmartNIC.
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